P\
/A \
y &
A

! B

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

9

// \\\
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTiONs ¢ 0= ROVAL A

or—— SOCIETY

Coupling Coefficients and Tensor Operators for Chains of
Groups

P. H. Butler

Phil. Trans. R. Soc. Lond. A 1975 277, 545-585
doi: 10.1098/rsta.1975.0015

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1975 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;277/1272/545&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/277/1272/545.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS

2 |
A

|

S

SOCIETY

%
S A

OF

OF

Downloaded from rsta.royalsocietypublishing.org

[ 545 ]

COUPLING COEFFICIENTS AND TENSOR OPERATORS
FOR CHAINS OF GROUPS

_
- O

12.
13.
14.

15.
16.
17.
18.
19.
20.
21.

© ® NS oW

By P. H. BUTLER

Physics Department, University of Canterbury, Christchurch, New Zealand

(Communicated by C. A. Coulson, F.R.S. — Received 27 December 1973)

CONTENTS
INTRODUCTION

A. AN ARBITRARY GROUP
KET REPRESENTATIONS

CouprLiNG (WIGNER) COEFFICIENTS

THE COMPLEX-CONJUGATE REPRESENTATION: THE 1-jm SYMBOL
THE 3-jm sYMBOL

REORDERING SYMMETRIES: THE 3-j PERMUTATION MATRICES
EXAMPLES OF PERMUTATION SYMMETRIES

RAISING AND LOWERING INDIGES

THE RECOUPLING (RACAH) COEFFICIENT: THE 6-j SYMBOL

THE 9-j syMBOL

. TRANSFORMATIONS OF BASIS

B. CHAINS OF GROUPS
COUPLING (ISOSCALAR) FACTORS
1-jm AND 3-jm FACTORS

CANONICAL CHAINS

C. TENSOR OPERATORS
TENSOR REPRESENTATIONS

Tue WIGNER—ECKART THEOREM
UNITARY OPERATORS

THE GROUP OPERATORS AS TENSORS
COUPLING TENSORS

A SUBGROUP BASIS

CONCLUSION

AppeEnDIX: THE BIEDENHARN-LOUCK TENSORS FOR Uy

REFERENCES

Vol. 277. A, 56

PAGE

[Published 30 January 1975

546

550
551
552
553
555
557
559
562
565
565

567
568
570

572
573
574
575
575
577
578
580
584

&
; Jﬁ,
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to @%I%
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINOIY

WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

A
2N

/

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L A

iy
I §
A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

546 P. H. BUTLER

The action of an arbitrary (but finite or compact) group on an arbitrary Hilbert space
is studied. The application of group theory to physical calculations is often based on the
Wigner—Eckart theorem, and one of the aims is to lead up to a general proof of this
theorem.

The group’s action gives irreducible ket-vector representation spaces, products of
which lead to a definition of coupling (Wigner, or Clebsch-Gordan) coeflicients and
Jm and j symbols. The properties of these objects are studied in detail, beginning with
properties that are independent of the basis chosen for the representation spaces. We
then explore some of the consequences of choosing bases by using the action of a sub-
group. This leads to the Racah factorization lemma and the definition of jm factors, also
a general statement of Racah’s reciprocity.

In the third part, we add to these ideas, some properties of the space of all linear
operators taking the Hilbert space to itself. This leads to a proof of the Wigner-Eckart
theorem which is both succinct and in the language of quantum mechanics.

1. INTRODUCTION

In all the many applications of group theory to physics, one starts with two concepts, a Hilbert
space and a group of operators acting on that space. The Hilbert space is the space of wave
functions of the system, or some subspace theoreof. The group, however, is chosen in many
different ways. In crystal theory, for instance, it is usual to take as the group, those space opera-
tions on the atom which leave it invariant (Hamermesh 1962, p. xiii). The choice of group which
Racah made (19424, b, 1943, 1949) stirred great interest among many branches of theoretical
physics. In studying the atomic f-shell, Racah separated the Hamiltonian into a basic
Hamiltonian, H, and a perturbation ;. The [ factorizes into radial and angular parts, which
may be solved separately, the angular part giving rise to spherical harmonics. This much was
standard (Condon & Shortley 1935) but previous attempts at introducing the perturbation H,
had been foiled by the multitude of angular functions (3432 for the half-filled f-shell). Racah
showed how to proceed: after writing the Hamiltonian in terms of ‘effective’ operators acting
only on the angular functions, he first noted that the (first order) operators generated the group
Uy, and that the subgroup chain

Uis ® 8p1a @ SUyx (B 2 G, © Ry © Ry)

was a chain of approximate symmetries (this fact aids the computation but is not essential). He
then used group theory to obtain the matrix elements of the Hamiltonian H, + H;, in terms of an
eigen-basis for H,. Judd (1963) describes the mathematics involved, including many later
developments. Wybourne (1965) was subsequently able to use these ideas to systematize the
spectral properties of the rare-earth atoms and ions.

The advent of computers which enabled a straightforward application of the Condon &
Shortley (1935) techniques, was the reason why Racah’s ideas were not universally accepted
by atomic physicists. However Racah’s 1949 paper had profound consequences in nuclear theory
with Jahn (1950) applying the techniques immediately. Nuclear physicists in their search for
a satisfactory many particle theory have explored many approaches: some work with effective
operators —operators which only have an action defined on certain wavefunctions, and others
choose the operators to be those of position and/or momentum. The distinction can become
rather hazy, such as regards operators on spin-space. Moshinsky’s recent (1973) suggestion of
working in ‘phase-space’ is perhaps the most fascinating. His idea to take as coordinates for each
of the n particles both the position and the momentum gives rise to a symplectic group, Spg,-
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TENSOR OPERATORS FOR CHAINS OF GROUPS 547

In every application one wants more than just the representation structure of the group, one
wants the matrix elements of alarge number of operators. In Racah’s treatment one requires these
for operators (on the Hilbert space) which are not in the group. Judd (1966) used the quasi-
particle formulation to expand the group from Uy, to Up+ ensuring that all operators of interest
were in the group. In the third part we study operators, choose various bases and prove the
Wigner-Eckart theorem for an arbitrary group. The Wigner—Eckart theorem gives the matrix
elements of the tensor basis operators between basis kets, as a coupling coeflicient (or 3-jm
symbol). First we must focus on the properties of the coupling coefficients.

Those physicists who work alongside pure mathematicians are aware that there are these two
distinct questions one may ask

(1) What general structures exist?

(2) What are the numerical values of the various coeflicients and matrix elements which occur
within these structures?

We note we require an answer to the second question.

Mathematicians have focused their attention on the first question. The names of E. Cartan,
I. Schur, A. Young and H. Weyl stand out among the originators. Their techniques have been
developed over the years and the subject is almost closed in so far as one is concerned with
representations of compact or finite groups over a field of characteristic zero. In § 7 we shall be
giving some recent references to this subject of character theory. These references will be to
computation techniques, as distinct from structural theorems.

Few physicists have looked at the second question in general, although there have been many
attempts to study certain classes of groups. Such restricted studies tend to obscure many essential
properties by making general results appear to depend on the group chosen. As the answers to
the most basic questions (such as —how much freedom is there in the phase choice of a 3-jm symbol
for a given group?) are either unknown or not well known, the simplest many-particle calcula-
tions run into relatively abstract group theoretic problems. This has perhaps been the prime
cause of the circumstance of which Ne’eman writes (1964): ‘The reputation that symmetries
somehow acquired —of being able to predict only qualitative results —is libellous.’

It is our purpose, in this article, to attempt to redress this situation. Our approach will be to
consider question two, taking the answer to question one as known. Both for reasons of mathe-
matical simplicity and because of their present greater use, we shall restrict our attention to
finite, or compact Lie, groups. In this case, not only is the answer to question one almost com-
pletely known, but also all irreducible unitary representations are finite dimensional. (Finite
dimensionality of the Hilbert space is usually used in perturbation theories.) Thus, although non-
compact groups have certainly been shown to be useful (for some references see Wulfman 1971)
by an arbitrary group we shall always mean a finite or a compact group.

Using this restriction of the types of group we shall consider, and by studying the action of a
group on a (separable) Hilbert space, we shall be able to explore the properties in a rather simple
manner, neither using much abstract group theory, nor using properties of vector spaces that are
not well known to every physicist and chemist.

One of the unfortunate consequences of the variety of appliactions is that in the literature
there is a multitude of names and notations — Clebsch-Gordan, Wigner, vector-coupling, frac-
tional parentage, isoscalar factors, etc., ..., for essentially the same matrix elements. Now
A. Clebsch and P. Gordan only studied question one, and our subject can be dated from Wigner’s
privately circulated manuscript of 1940 (Wigner 1940). Wigner gave a general discussion of the

56-2
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548 P. H. BUTLER

coeflicients for simply reducible groups. His results have been extended in various directions over
the years. Notable work has appeared in the books by Hamermesh (1962, for the symmetric
group), by Griffith (1962, for crystallographic groups) and by Vanagas (1971, for most groups).
To these must be added the paper by Racah (1949) and many papers by Baird, Biedenharn,
Louck, Moshinsky and their co-workers on the unitary groups (see Louck (1970) and Moshinsky
& Devi (1969) for detailed references). Harnung & Schaffer (19734, b) and Harnung (1973) have
continued Griffith’s work, and looked at questions of reality. However, only the papers by
Derome & Sharp (Derome & Sharp 1965; Derome 1966) treat the problem for an arbitrary
group. It is their general analysis we wish to extend.

We have another remark on notation. In the theory of angular momentum one refers to the
symmetrized coupling and recoupling coefficients as 3-j and 6-j symbols respectively. This is
clearly bad notation, for the 3-j symbol depends on the basis labels (the m quantum number)
whereas the 6-f and higher symbols do not. We shall follow recent usage in calling the 1-j and
37 symbols jm symbols.

This article is divided into three parts. The first and much the larger part is devoted to
systematic definitions and derivation of the properties of ket representations, coupling (Wigner)
and recoupling (Racah) coefficients, 1-jm and 3-jm symbols, the 1-j phases, the 3-/ permutation
matrices and the 6-j and 9-j symbols. We note the freedom we have in their definitions, and use
this freedom to simplify their properties. The results of Derome (1966) on the symmetries of the
coefficients are used and extended, thus removing a few of the arbitrary choices of phase.
Section 7 uses character theory to illustrate these results for many groups. We are thus able to
show that there is little difference in these properties between quite different groups, excepting
groups of small dimension when one or two simplifications occur. In § 8, we elaborate on Derome
& Sharp’s (1965) results on the raising and lowering of the indices of the 3-jm symbol. In a paper
on character theory elsewhere (Butler & King 1974) we prove a result on 1-j phases (equation
(8.10)) for all Lie groups and for most finite groups. This particular result allows us to simplify
the results of Derome & Sharp for all but these rare cases, because the position of the multiplicity
index can then be shown to be unimportant.

In the first part we use no information concerning the bases of the representations, but in the
second we explore the factorization property which always follows when a subgroup is imbedded
in the group —an operation which (partially) fixes the basis. This part is relatively brief, because
the results follow almost trivially from the former, and certainly not because the results are
unimportant. Indeed the factorization lemma of Racah (1949) gives many simplifications in
physical applications, as well as being the basis of most methods for actually computing coeffi-
cients. Thus the equation (13.13) giving the symmetries of the isoscalar factors may be regarded
as the most important single result. However, this factorizability has largely been ignored in
previous analytic work, perhaps because it requires the introduction of additional symbols in
equations which are already bedevilled by the number of symbols.

The subgroup structure simplifies the problems of computing the coupling coefficients, to the
extent that if we know the 3-jm factors for each step in a canonical chain, we may trivially write
down any entire coeflicient. In physical applications, when canonical chains are not often used,
it is possible to transform to another basis as the last step. (See, for example, Kaplan 19624, ;
Moshinsky & Devi 1969; Kramer 1968.)

Although this article is strongly motivated by the physics, to the extent that we study only those
mathematical properties which have been found to be useful, it is helpful to avoid reference to
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TENSOR OPERATORS FOR CHAINS OF GROUPS 549

the applications. Much of the language is derived from the quantum mechanical vector-coupling
problem in 3-space, but it may be more helpful to bear in mind operations on functions that span
some other space, rather than physical vectors. To this end, we shall make much use of Dirac’s
ket-vector notation (Dirac 1930; Messiah 1965) and use greek letters, rather than j, to label
group representations. This notation leads to a self-explanatory notation for the coupling
(Wigner or Clebsch—Gordan) coefficients,

(Ayiy; Azizlr)‘i%

where 7 is a ‘multiplicity label’ which is required if the representation basis vector |A) occurs
more than once in the Kronecker product |A;7;) |A;7,). Derome & Sharp’s (1965) notation for
3-ym symbols

(A41252,)

iy iaiy

is used for part A, but we change to a generalization of Wigner’s notation (Wigner 1940)

A Ay AgY
(il lpy 1y )
for part B. The tensorial notation of Derome & Sharp is most useful for the analytic work of the
first part but is less convenient in the second. Both notations suffer from disadvantages in interpre-
tation because the position of the indices often bears little relation to the significance as matrix
indices. The matrix elements of the unitary matrix representing group element R in representa-
tion A will be written as

A(R)

: is
rather than the more common notation

Dij(R).
The 1-jm symbol for this same representation will be denoted

(V)5

and it is a unitary matrix of the same dimension as A(R). Complex conjugation is denoted by
raising all indices

AR = AR,

We shall always sum over repeated indices, usually one lower and one upper. (Derome & Sharp
(1965) use the notation A(R)?; for our A(R),; making this summation convention slightly more
consistent, but this tends to confuse complex conjugates.) For the 3-jm symbol it is meaningful to
raise and lower indices individually —this is the content of the Derome & Sharp lemma.

As stated above, we shall use the techniques of Derome & Sharp for manipulating j symbols,
although Agrawala & Belinfante (1968) have given the generalization of the graphical techniques
developed for R, by Jucys, Levinson & Vanagas (1962).

de Vries & van Zanten (1970) have recently suggested that some of the theory presented here
in terms of representations can be given in terms of classes, at least for finite groups, and they
suggest that one may be able to use this dual approach to extract additional information.
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550 P. H. BUTLER

A. AN ARBITRARY GROUP

In this first part of the article we shall derive those properties of the various coefficients that are
entirely independent of the basis chosen in the representation space. We restrict ourselves to
representations of finite and of compact groups on a Hilbert space —since then only finite dimen-
sional unitary representations occur. Most of the general results follow from these unitary
properties, or from Schur’s lemma, although in § 7 we use the techniques of character theory to
obtain some particular results for certain groups—by way of illustration. In § 8 we do require a
result from character theory, discussed elsewhere (Butler & King 1974). This result, on the
occurrence of (pseudo-) symplectic representations in the product of (pseudo-) orthogonal
representations, gives very important simplifications for all Lie groups and almost all finite
groups. For the exceptions, one must retain certain phase factors of Derome & Sharp.

Let us begin by fixing our notation and reviewing some of the elementary properties of vector
and matrix representations (see also Messiah 1965, appendix D).

2. KET REPRESENTATIONS

Consider a Hilbert space. We use a Hilbert space but we only need a linear vector space with
a non-degenerate positive definite scalar product defined on it, for we are then able to write an
arbitrary element of the space in terms of any (complete) orthonormal basis (see, for example,
Messiah 1965, p. 164). We use Dirac’s bra—ket notation and for this paper we shall consider only
elements of norm one in the space

|a), [b), ...

the scalar product of two vectors being written {a|6), which is a complex number, in general.
Thus
(el = (blay* (2.1)

and (alay =1 (2.2)

(* denotes complex conjugation, throughout).
Leta group G (elements R, S, ...) act on the Hilbert space unitarily so as to take all normal kets
to normal kets, we write this as

Oglay = |b). (2.8)

We now use this group action to choose a basis on the Hilbert space. We first note, using only
the group axioms, that this action splits the Hilbert space into a number of orthogonal spaces.
We shall refer to these subspaces as representation spaces and label them by greek letters. We now
choose an otherwise arbitrary orthonormal basis within each subspace. The collection of such
bases is thus a complete basis for the Hilbert space. We denote an individual basis ket by three
labels:

(1) an integer (latin letter) enumerating the basis within each representation space;

(2) a group-theoretic label (greek letter) for the representation space;

(3) a collection of convenient symbols to distinguish different subspaces with the same trans-
formation properties. When this label is not relevant we shall often omit it. (For example, one-
electron and two-electron wavefunctions are quite distinct (and orthogonal) but may well have
the same transformation properties under the group of interest, say, rotations of an ion in a
crystal.)
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Thus a typical basis ket will be written
|#A)  or simply |Az).

We shall denote the dimension of the representation space A by |A|. (In the standard notation of
angular momentum theory the dimension of representation J is written [J] = 2J + 1.) We also
use the abbreviation

A Ags o] = A |2 ..

The reduction of the Hilbert space into representation spaces will always be taken to be
complete, and thus we will have only ‘irreducible’ representation spaces.

The action of the group element R on the basis ket |Az) will be to give some ket |a), which may
be written in terms of the basis of this representation space

Ogl2iy = |a)
= ]2 |x/\j)A(R)ﬁ. (2.4)

Using (2.1) and (2.2) we have that the coefficients A(R);; form a unitary matrix. Thus, using the
notation for the complex conjugate

{/\(R)ij}* = /\(R)ij (2-5)

and using the summation convention for repeated latin letters also mentioned in the introduction,
we have

A(R) 5 A(R)* = 0y (2.6)

Acting on (2.4) with another element .§ of the group gives
A(R) 5 A(S8) 1 = A(RS) iy, (2.8)

which completes the statement that the matrices A(R) form an (irreducible) unitary matrix
representation of the group. This is a representation in the usual sense of the word in that there
is a homomorphism between the group elements R and the matrices A(R). In this sense the ket
representation is not a representation at all, but it is usual to use the term, owing to the importance
of (2.4).

In the above we said that we chose the basis arbitrarily, but we must make one restriction on
this, namely if two or more representation spaces have similar transformation properties under
the action of the group, we choose their bases in the same way. That is, the derived matrix
representations are identical if the ket representations have similar transformation properties.
Note that any linear combination of similar ket representations will also be similar.

3. CourLING (WIGNER) COEFFICIENTS

The tensor (Kronecker) product of two ket representations will give another ket representation,
which will usually be reducible, the term |x; A4, |#,A,%,) decomposing into components of each
of the irreducible spaces of the product space:

|43 Ay 21 [#5 Ag0p) = %].[(xl/\l, x5 Ag) TATY (AT Ay 1y; Agig). (3.1)
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552 P. H. BUTLER

The three kets |x; A, 4,), |#5A57,) and | (¥, A4, x5 4,) 7A7) may belong to three distinct Hilbert spaces
or we may wish to consider them as part of the one Hilbert space that is the union of all three. For
convenience, we have explicitly indicated that the ket | (¥, A;, x,A,) 7A7) lies in the product space
(%124, %5 A5). The label r is required whenever several linearly independent subspaces of the
product space transform in a similar manner under the group. The separation according to this
label is arbitrary in that any linear combination of similar representations can be chosen. It is
trivial to verify that the kets |r’A7) defined by

[r'Aiy = X Up, |rAd) (3.2)

satisfy all our requirements of a suitable choice of basis, if U/*is any unitary matrix. Even if there
is no multiplicity (r = 1, only) there still remains an arbitrary phase for each A. However, we
must assume that the separation and phases are fixed —albeit arbitrarily. (For multiplicity free
products, the phases are often chosen so that the coefficients of (3.1) are real and positive for 7;
and 7 maximum.)

The coeflicients {rAi|A,¢;; Ayiy) are known by many names, but for the reason given in the
introduction, ‘Clebsch-Gordan’ is probably least justified, although most popular. We prefer
the descriptive ‘coupling coeflicients’. Since the basis kets are orthonormal, it follows that the
coupling coefficients form a unitary matrix of dimension |A,| |A,|, indices (3,i,) and (rA7)

pX (Agiy; Agla|rAi) (r' At | Aydys Agiy) = Oy Opp Oy (3.3)

1112

DIEGHH Apla|rAi) {rAi| Ay 115 Agis) = 0 470,45 (3.4)

AL
where we use the usual bra—ket notation for complex-conjugation (see (2.1)).
We can use the unitarity (3.3) in (3.1) in order to write the product ket in terms of the
uncoupled kets
[ (1245 % A0) TATY = 35 (Agdn; Agla|rAd) |21 Agis) [45Ag5). (8.5)

(N2
These coupling coeflicients also reduce the direct product of the representation matrices.
Operating on (3.5) by a group operator, and then using (3.1), we may use the orthogonality of
the product kets to give

X A Ayt Agig) Ay (R) 1,5, Aa(R),5,CA0 J15 Aafalr A1) = 8y Oz A(R) 5 (3.6)

til2d1]
which may be stated as “The matrix of coupling coefficients is the matrix which reduces the direct
product of two irreducible representation matrices into a direct sum of irreducible representation
matrices, for all group elements’. Such a statement is often taken as the definition.

4, THE COMPLEX-CONJUGATE REPRESENTATION: THE 1-jm SYMBOL
Consider the complex conjugate of equation (2.8)
A(R)9A(S)* = A(RS)* for all R,SeC. (4.1)
Hence these new matrices also form a matrix representation of the group, although possibly not in

a standard basis. After being transformed to the standard basis, it is referred to as the representa-~
tion complex conjugate to A, and is denoted by A*. Clearly it is of the same dimension

|A%*| = [A] (4.2)
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and can easily be shown to be irreducible if A is irreducible. If all the matrices are real (and thus
orthogonal), then the operation is trivial, but in general two possibilities will occur. Either the
representations are equivalent—that is, the matrices can be transformed into one another by
a change of basis —or they are not. Even if A and A* are not equivalent, a change of basis may still
be required because in our choice of basis (2.4) nothing special was required. If the representa-
tions A and A* are equivalent, then we have only the one standard basis so that

A(R) = A%(R).

The necessary and sufficient condition for this equivalence is for the character y* to be real. If
the character is real, we may be able to choose a basis so that all the representation matrices A(R)
are real. For this case the representation A is said to be orthogonal, otherwise it is symplectic. If
the character is complex, the representation is said to be complex.

We shall refer to the unitary matrix which performs the change of basis between A(R)* and
A*(R) as the 1-jm symbol, (A). With the notation

Mg = {7}, (4.3)
then A% (R)y; = (VFA(R)H(A),,. (4.4)

Note that there is an arbitrary phase in this definition, but one that is fixed by reference to the kets.
In fact, taking complex conjugates twice gives

A(R)in = (A)F(A*) 1 A(R) a (A*)™(A) e (4.5)

By Schur’s lemma, the matrix (1)%(A*);, is a multiple ¢, of the unit matrix d,;, and from the
unitarity of the 1-jm symbol this gives

(A*)z‘j = ¢(A);; and ¢:\k = Qs (4.6)

We refer to ¢, as the 1-j phase.
Example for the group Ry, all the characters are real, but even for the orthogonal representa-
tions, the basis is not chosen so that the representation matrices are real. The basis is chosen so that

Ya*m = ( —)ijwm'
We choose the overall phase to give real 1-jm symbols,
(J)mm’ = (_ )j—m L — and ¢j = ('— )2j'

In § 6 we shall show that for real characters, the 1-j phase ¢, is fixed by group theory as + 1, and
can be found using character theory only. On the other hand, the 1-jm symbol is clearly dependent
upon the choice of basis. It is for this reason the label m is included in its name.

5. THE 3-jm sYMBOL
We are now in a position to define the 3-jm symbol by
A5 A = AT KA 2,20, (0% (5.1)
(asum over s and j is implied). One inserts the dimensionality factor |A|* and the 1-jm symbol (A)%

to put the three representations A,, A, and A* on an equal footing, the precise reasons for this will
become apparent in the algebra which follows. The unitary matrix K(A;A,A) in the multiplicity

57 Vol. 277. A.
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label is inserted for historical reasons. We shall assume that the separation in 7 in the coupling
coeflicient is arbitrary, but fixed, but that K is to be adjusted to produce the simplest possible
properties for the 3-jm symbol. If we have no accepted choice for the coupling coefficient’s phase
we could redefine the coupling coeflicient by

<Mi|A1 i35 Agla)gensible = | AI% (A A52%), iy 4g7° (5.2)

Hamermesh (1962, p. 376) suggests this, but the Condon & Shortley (1935) phases give for R,
(where 7 = 1 only)

Kos.(11jaf) = (=)t
and considerable confusion would be created by attempting to redefine phases now. The insertion
of the matrix K also serves the purpose of reminding readers of the essential arbitrariness in the
multiplicity index.

It follows from the definition (3.1) of the coupling coeflicients, and (5.1) above, that both coeffi-
cients are identically zero wherever the representation A does not occur in the Kronecker product
Ay x Ay, This information was omitted from (3.3) and (3.4) and for simplicity we shall continue
not making explicit reference to it.

The 3-jm symbol is usually written in the Wigner notation, which we shall use ourselves in the
later part of this article,

(/\1 A2A3)r iytaty (Al ;-lz A3) ) (5~3)

i 1y Iy
and the complex conjugate symbols are denoted by
*r
(A Ay A,) Tatets = (Al /.\2 AB) . (5.4)
h I3
The unitary relations follow directly from the definition, and the unitarity of the other terms,

[Ag] (A AgA5)" 5t s(Ay A Ag) s s0is = Oy 300, PYL (5.5)

and %‘, [Ag] (A4 A525)" 0 %2%3(Q3 Ay Ag), i1 400, = 04,4304, 45 (5.6)

These equations are very similar to those for the coupling coefficients, but the 1-jm symbol in
(5.1) makes its presence felt by transforming the product representation in (3.6) to its complex
conjugate. By using (5.6) to rearrange terms, (3.6) becomes

(A1 A2 A8); 4, 5,5, A (R)1, 5, Aa(R) iy 5y = Aa(R)53(A1A52),. 5, 7,5, (5.7)

This equation has been used by Hamermesh (1962, equations 7-186) as the starting point for
a calculation of the numerical values of the coeflicients for the symmetric groups.

We could use the unitarity of A3(R) to shift it to the left here, to give a very symmetric expres-
sion, but we leave the exploration of such symmetries to the next section. Instead, we use (5.6)
again, to give Derome & Sharp’s defining equation (1963),

AI(R)illez(R)izjz = %: Ms] (AlAz/\s)riliz,ia)‘s(R)i"j’*(Al/\zA3)r;‘1;‘2j3- (5.8)

This definition, like ours of (5.1), is incomplete, being undefined up to any transformation of the
multiplicity label. They are able to define the 1-jm symbol as a special case of (5.8), when A, is the
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identity representation — which we shall denote by 1. The matrices A, (R) are simply the number 1,
and the sum over the product representations reduces to one term:

AZ(R)izjz = |Ag| (12,45)1 izi"/\a(R)i"ja(1)(2/\3)11;'27'3- (5.9)
This is to be compared with the definition of the 1-jm (4.4), thus?
(Ais = [A[F(1AAF) 11 55 (5.10)

Now there is another unitarity condition on the representation matrices, a consequence of the
finiteness (or compactness) of the group,

é f A(R); X' (R)' AR = 8,3, 8318, (5.11)
G
where g =f dR

G

is the integral (or sum, for a finite group) carried out over all group elements. Using this in (5.8)
gives

1 o
£ RN R) 5 2B R = ) 502 (5.12)

Derome & Sharp use this result extensively to prove their results and we follow them by first
deriving the symmetries of the 3-jm symbols under permutations of A;, A, and A,.

6. REORDERING SYMMETRIES: THE 3-f PERMUTATION MATRICES

The left side of (5.12) is independent of the order of the product A;, A; and A (and incidentally —
group theory shows that it is zero if the triple product does not contain the identity representa-
tion). Thus we must have

(A1 A Ag)" i ta (A Ay A3), idads = (AaApAp)® T ie(A, Ay AC)sjajbfc’ (6.1)
where a b ¢ is any permutation, =, of 1 2 3. It follows that
(Ao Ac)siy i1, = M(T0 AL A3 A3) (A1 A2 A5) 4, 4, 55 (6.2)

where m is a unitary matrix. In this section we shall quote and extend Derome’s (1966) results on
the possible structures of the 3-j permutation matrices m(r).

Clearly the matrices m(x) exist for all possible reorderings but will not all be independent. We
refer the reader to Derome for a detailed consideration of their arbitrarity, only sketching the
argument here. We use the freedom in the matrices K(A;A,A3) of (5.1) to adjust the relative
definitions of the various 3-jm symbols in the various orderings, in order to give the simplest
possible matrices m. First, it is clear that if A;, A, and A4 are all different, we shall have six
independent choices for K, and they could be chosen to give almost any m; on the other hand, if
the three representations are equal, then only one K is available, and group theory will impose its
greatest restriction. In this case, we will also have fewer m’s since then m(m, A, A, A3) = m(m,A,2, 2;),

t Strictly, Derome & Sharp set the representation A, equal the identity but then their phase for the 6-f symbols
differs slightly from the standard one. If Derome & Sharp’s (1965) equation (3.1) is changed to our (5.10), then
no other changes need be made and we obtain the standard phases for the R, 67. Thus in (8.1) and (9.6) we shall

follow Derome & Sharp’s notation, which unfortunately differs from that of Wigner (1940). In (9.6) we reorder
some subscripts relative to Derome & Sharp.

57-2
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etc. (Our first choice will be to always ask this.) There will also be restrictions given by complex
conjugation of the equations and representations.

The three possibilities for equalities among the representations give the three cases

(a) if Ay = Ay + A3 + Ay, almost complete freedom exists and we choose either

m(n)rs = 87s (6'3)
or m(1> A1/\2/\3)7‘3 = 0()(1)*2)(37) 6\1‘3 and m(c)rs = 31*3: (6'4)

where 0(A;A,Ag7) = + 1, where we use the labels = = i for odd permutations (interchanges) and
n = ¢ for even (cyclic) permutations. The first choice is simpler in one sense, but sometimes there
are reasons for the second. We discuss this later in this section and in § 8.

(b) if Ay = Ay *+ Ay, it is still always possible to make a diagonal choice, but a phase
0(AAA'r) = + 1 enters of necessity, depending on whether the rth term of A’* occurs in the
symmetric or antisymmetric part of the product A x A. However, we choose the K’s so that

m(i, AN, = O(AAN'T) 8, (6.5a)
giving m(c, AAX) g = 8. (6.5b)

We note that (6.5) is not the choice of Hamermesh (1962, equations 7-206¢) since he does not
choose

m(i, A,y = m(i, AN'Q), .

(¢) ifA; = A3 = A3, Derome proves that it may be impossible to choose the one K in such a way
that all m(w) are diagonal. The triple product A x A x A may contain the identity representation,
in the symmetric, antisymmetric or mixed symmetry part, or even several times in each. This
result was also implied by Griffith (1960). We choose K to separate the three types of symmetry,
labelling the symmetries with Young diagrams for S5, namely [3], [21] and [13].

mt () 0 0
m(m) =[ 0 mi2 () 0 ]

. (6.6a)
0 0 m* ()

For the fully symmetric [3] and fully antisymmetric [13] terms, the submatrices are as for
example (b) above. The mixed symmetry terms [21] occur in pairs and we could thus take
permutation submatrices of dimension 2, taking K so they will be in standard form for this
representation of S5, namely (Hamermesh 1962, p. 224)

me) =g O] men =[;f W mes=[h, 7YY

2

—1 1 J3 _1 _1 \/3
12 = 2 2 1 — 2 2
(The notation should be self-explanatory, but for the cyclic permutations it is essential to note

carefully the definition (6.2) and not to confuse the action of m((123)) and m((132)).) However,
so as not to lose the ordering of m((12))

I 0

o 1}
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we choose to order the mixed symmetry block so that m21((23)), for example, is

R

where I is the unit matrix of dimension equal to the number of mixed symmetry pairs.

For simply reducible groups, the 3-j permutation matrices are always of dimension one —by
definition —and thus (6.6) is not required. Indeed the situation simplifies further in that the
phases of interchanges in both () and (¢) can be written uniquely in the form ( —)*+2+s where
(—)*1is a phase permanently associated with representation A. For such groups it is convenient
to choose this same phase factor for case (a).

Note that since the 1-jm symbol is a special case of the 3-jm symbol, we have

@y = ¢ = m(1, AA*1),; = O(AA*11) = + 1 (6.7)

(for Ry it follows that ¢; = (—)¥).

Choices (6.3)—~(6.6) give the permutation matrices explicitly. In the next section we show how
to use character theory to evaluate the symmetry types. From character theory, it is clear that the
symmetries associated with the triple product Af x Af x A¥ are the same as for A; x A, x A;. Thus
simply ordering the symmetries appropriately —which would be natural anyway —gives

m("ta /\1 /\2/\3)73 = m(”) /\;k )\;k /\;‘)rs' (68)
Note also that all the choices including (¢), give
m((12), A1 A345),5 = O(A, A3 A57) O, (6.9)

and that m is always a real (orthogonal) matrix.

7. EXAMPLES OF PERMUTATION SYMMETRIES

In the previous section we gave Derome’s result that the modulus of the 3-jm symbol is not
always invariant under permutations of the representations. Expressed differently, the 3-j permu-
tation matrix cannot always be chosen diagonal. In particular, the Kronecker cube of a repre-
sentation may contain the scalar representation with mixed symmetry, and this leads to a two
dimensional submatrix on the diagonal of the full 3-j permutation matrix. We shall use character
theory to investigate such occurrences for various groups, refering to representations whose
Kronecker cube does not contain such a scalar, as ‘simple phase’ representations. Groups for
which all representations are simple phase are thus described as being simple phase groups
(van Zanten & de Vries 1973).

Since the various symmetry properties of the 3-jm symbols depend only on the properties of the
representations as a whole, they can be calculated by the techniques of character theory
(Hamermesh 1962; Robinson 1961). In particular, the number x of scalars of type [21] in the
cube of a representation is given by

¥ =2 3 (P (R) P (R). (7.1)

The algebra of S-functions (Littlewood 1950; Robinson 1961; Wybourne 1970) contains an
operation (plethysm) which enables the separation of the symmetries to be evaluated without
recourse to character tables. We have the notation,
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(a) the symmetric and antisymmetric terms of the Kronecker square of A, are the symmetrized
Kronecker products A®{2} and A®{1%} respectively, and

(b) the fully symmetric, mixed symmetry and fully antisymmetric terms of the Kronecker
cube are written A®{3}, A®{21} and A®{13} respectively.

These symmetrized products on the representations A of the group G may be stated as
‘constructing irreducible representations of S, (or 3) out of the representation matrices of G.
These induced representations of .5, (or S5) remain representations of G, and as such may be
expressed as a direct sum of representations of G.” The operation is thus related also to the
operation of wreath products (Kerber 1973). The evaluation of symmetrized products using the
plethysm of S-functions is largely solved but it is not the purpose of this article to review this, so
we refer the reader to Wybourne (1970) and various recent articles (Butler & Wybourne 1971;
Butler & King 1973—4) for discussions of the problem and for earlier references. We simply give
the results of some simple calculations (Butler & King 1974).

The representation [321] of the symmetric group Sj is the first really interesting case for the
symmetric groups. Its square contains the representation [41%] once symmetrically and three
times antisymmetrically. Its cube contains the identity twice fully symmetrically, one pair with
mixed symmetry, and once antisymmetrically. [321] of S was the example given by Derome
(1966) of a non-simple phase representation. It is the smallest such representation for the sym-
metric groups. van Zanten & de Vries give many other finite groups that are not simple phase
noting, in particular, smaller groups (van Zanten & de Vries 1973).

There are infinitely many such non-simple phase representations for most Lie groups. For the
orthogonal, rotation and symplectic groups (0,, R, and 8p, ), the first such representations are

0, and R, [21] n = 5 only
[31] n>=b
[211] nx="1

Sp,, @1y n>4
@11y n>6

The groups R, ~ Ry x R3, Ry ~ Sp, and R, are simply reducible. For the unitary groups, the
plethysms involved are more difficult to evaluate and general results not so readily stated unless
we use the composite-tableau (back-to-back) notation (Littlewood 1943; Wybourne 1970;
Abramsky & King 1970; King 1970). In this notation, the representation of SU,, usually denoted
by the partition {A} is denoted by the pair {#; v} where

/"i'*"r:)(i and 7_“Vi:)(n~i for ¢

N
DOj=

n.

Using this, we have that the representations are usually not simple phase for all » whenever
4o and v are partitions of the same number. Some of the simplest non-simple phase representations

are the following:
SU, {21; 21}, {31; 31}, {41;32), {32;41} (n3>4),

e.g. for SU, {4310}, {6420}, {7410} and {7630}. The representation {7410} of SU, is interesting in
that it is one of the smallest non-simple phase representations for ST, that is also not real,

{7410}* = {7630}.


http://rsta.royalsocietypublishing.org/

A
2N

/

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

L A

@ A

I §
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TENSOR OPERATORS FOR CHAINS OF GROUPS 559

The isomorphism between the representations of SU, and R, furnishes a similar example for the
rotation groups
R [521]* = [52—1].

(All characters of the symmetric, symplectic and orthogonal groups are real, also the rotation
groups except the sequence R, Rg Ry, ....)

By means of these techniques, it is easy to show that SU,, although not multiplicity free, is in
fact a simple phase group. Derome obtained this result by direct integration (Derome 1967).
S5 1s another such group.

8. RAISING AND LOWERING INDICES

We shall now investigate the relation between the 3-jm symbol for the triple A;A,A; and the
triple Af A3 A¥. The first result is the Derome & Sharp lemma and is the key to the usefulness of
their tensorial notation. We prove a theorem that further simplifies their result. Their result
follows quite simply from (5.12) and the property of the 1-jm symbol of transforming the repre-
sentation matrices to their complex conjugates. First we formally write

(A)53(A A325)

= (/\1/\2/\3)r'1i2i3 (8.1)

rj1l2ts
and raise the indices ¢, and 7g in a similar fashion. The Derome & Sharp lemma then states that
there exists a unitary matrix 4, dependent only on the product as a whole and independent of
the basis 7; 7,75, with the property that

A(A1 A545)"8(A1 A9 /\3)31'1@'2 s = (A Ay Ag)" s, (8.2)

that is, the complex conjugated 3-jm symbol is equal (after independent changes of the basis of
each of the kets and of the multiplicity label) to the 3-jm symbol for the complex conjugate
representations. Written out in full in the Wigner notation, (8.2) reads

& & *\ g %r
51 A A AP (A (Ag) i (Ay) s (A.l A Aﬁ') - (’\.1 A A.‘*‘) L (83)
sf1dads Ji Ja s hh Iy I3
This lemma follows from the integral (5.12). For the group R, the characters are real and the
1-jm symbols known, leading immediately to
A(j1j2j3) =1,

and (].1 J2 J.3) - (__)j1+jz+j3( Ji J2 Js )

my my Mg —my —my —mMg

Let us consider the properties of 4(A;A,23) in the general case. We first use the properties of
the 3-j permutation matrices found or fixed in § 6. Consider the case of simple phase products
first. We always have

(A1A2A3)

and (A A3 A7)

= er(/\a/\b/\c)riaibica (8'4)
= ﬁr(A: /ka Af)rjajbjca (8'5)

riytels
717275
where 6, = + 1 and we have used the result (6.8) that the products A; x A, X Az and Af x AF x A¥

have the same symmetry types even when they are distinct. Comparing the result of raising the
unpermuted 3-ym symbol and then permuting, with raising the permuted 3-jm, gives

A(AIAZ/\:}) Z =A(/1a/\b/\c)rsgs‘ (8'6)

rsvr
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Thus

A(A12,45),s = 0 if symmetry 7 & symmetry s, (8.7)
otherwise A(A1A545), = A(AG AR AL) s (8.8)

(8.8) clearly holds for the non-simple phase case since A; = A, = A3 and it is straightforward to
show (8.7) generalizes also. We have shown, therefore, that the block diagonalization of the
multiplicity spaces by symmetry type, has also block diagonalized the transformations between
pairs of complex conjugate multiplicity spaces.

Next, comparing the action of A(Af AF AF) with A(A;A,A;) gives that

AT AG A3 )5 = B2, P2, 82,4 (A1 A5 A5) - (8.9)

For R, it is well known that the product of the three 1-j phases is always + 1 when A;A;A4 form
a triple, but this is by no means obvious in general. Indeed the choice of ¢, = 1 when A £ A%,
made by both Derome & Sharp (1965) and Agrawala & Belinfante (1968) but not used by either,
soon leads to a negative signin (8.9) (e.g. {13} {12} {1} of SUj, since ¢ys, = —1). Elsewhere (Butler
& King 1974) we show that it is nearly always possible to choose the 1-j phases so that

¢/\1¢A2¢/\3 = 1. (8.10)

One requires both a knowledge of ¢,, A* = A and of the Kronecker product rules, in order to
prove this. The investigations show that (8.10) breaks down for very few finite groups only, the
smallest such group being the group of order 24 with generators related by $% = 72 = (§7)3 and
labelled ¢ —2, 2, 3) in the notation of Coxeter & Moser (Biedenharn, Brouwer & Sharp 1968).
The above group of order 24 can be made to satisfy (8.10) by using complex 1-j phases, but such
a choice would introduce many complications in the 3-j permutation matrices, as these would
no longer be all real. The choice of ¢, corresponds to asking for a particular relation between the
1-jm symbols (A);; and (A*);;, so that the phases relating the 3-ym symbols cancel without the
insertion of an additional phase.

To prove (8.10) we must not only show that it holds when there is no choice (when A; = A¥, etc.)
but also that there is an appropriate choice when A + A*. For example, while most unitary
groups have ¢, = 1if A = A*, some do not. Those of the series SU(4k +2) form the only excep-
tions, containing representations where ¢, = — 1. For representations with real characters the
1-j phase is given by

for SU(4k+2) ¢, = (-), A a partition of/. (8.11)
By using the Littlewood Richardson rule, it is easy to verify that if A; x A, x A3 contains the
identity, then /; +/,+1; is even. Thus choosing (8.11) when A & A* will ensure that (8.10) is
always satisfied. However, such considerations do not fix the phase for SU(4k). Either ( +)! will
satisfy both requirements.

Suitable choices of the 1-j phase for the semi-simple Lie groups are given in table 1, p. 561.

Now we consider the freedom in the matrix K of (5.1), and use the results (8.7)—(8.10) to prove
that it is always possible within the limits of the above mentioned validity of (8.10) to arrange
matters so that 4(A; A,A43),s = J,,. This is equivalent to saying that the position of the multiplicity
index in the 3-jm symbol is not significant. This will lead to many simplifications in the properties
of 6-j and 9-j symbols.

TureoreM: The multiplicity metric tensor A,s, can always be chosen the unit matrix ( for groups that
(8.10) holds).
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We have shown that the matrix 4(A; A, 23),, is block diagonalized with regard to the symmetry
types of the triple (A;A,13). Let us consider changes in the separation in the multiplicity index

U(Al ’\2 /\3)1"1' (’\1 ’\z A3) = (’\1 /\2 /\3);'1'11'213- (8- 12)

7"1:1 'iz’l:s
From the requirement that U does not change the permutation matrices, we have that U is block
diagonal with respect to symmetry type, and that

) ) . U(A12525),, = U(m(A12345)) s (8.13)
but is otherwise arbitrary.
Such a transformation induces a change in 4,

AN 2A52) s = UXsA3A5)r A(A1 A5 Ag)s U(AT A3 A7) g (8.14)

We must consider two cases: first if the space AF AF A¥ is the same as the space A; A, (or some
permutation of it). For this case we are required to choose

U(AT /\; A:)r’r = U(/\l /\2 A3)r'r (8 15)
and the transformation (A 3) may be written
4" = UAU?, (8.16)

where we know that 4 is symmetric ((8.8) and (8.9)). Now lemma 2 of Gantmacher (1960, p. 4)
states that if 4 is unitary and symmetric, it may be written in the form

A =2¢eS% where S§=75*%=757T. (8.17)
Taking U=e?Hs
gives A" = e~iiS¢eiSeiis
=1 (8.18)

The second case is simpler, if A;A,4; and AFAF AF are different spaces, U(A;A31;) and
U(Af A7 A¥) may be chosen independently. Taking

UMM =1 and UMFAFAF) = A*

gives A =1 (8.19)

TABLE 1. CHOICES OF THE 1-j PHASE SATISFYING EQUATION (8.10), FOR THE LIE GROUPS

SUsp11 ¢A =1

SUy,  $a=1 or (=)

SUsp42 ¢A = (_)l

R, n=20,1,7 (mod8) ¢
n=26 (mod 8) Py
n=3,4,5 (mod 8)

Spn P = (=)

Gy Fyand Eg ¢, =1

E6 ¢true = 1 ¢spln = i 1

E7 ¢true =1 ¢spin =-1

1
1 ¢spin = il

o

¢true spin

In the remainder of this article we shall assume (8.10) holds, for although the general case can
be readily treated, it seems unlikely that it will be needed by physicists.
Before leaving our discussion of the properties of the 3-jm symbols it is worth remarking on the

58 Vol. 277. A,
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constraints we have placed upon K —the separation of the multiplicities. First, in the separation
according to symmetry type, we required only that the symmetric, mixed, and antisymmetric
groups of terms were separated, any unitary linear combination of terms of the same type was
allowed - except for mixed symmetry terms, when the phase between the appropriate pairs was
fixed. The separation for one product A, x A, @ A was then chosen for all permutations of A; A, A*.
These choices gave the simplest form to the 3-f permutation matrices. Second, 4, the unit matrix,
required a close relation between the triple products A; 4,45 and Af AF A3, If these triples are
different any unitary linear combination of one induces the complex conjugate transformation
in the other. If the triples are the same (up to a permutation) then we are restricted to allowing
real (orthogonal) transformations only.

These choices can be illustrated by choosing two extreme triples with multiplicity four.
If M, AFf A8, and Af are all different, then we have no restrictions of K(A;A,43), and
any unitary linear combination of one solution will also be a solution, but by the choices for
m(m, Ay AyAg) and A(A;A,A5) we have fixed eleven other separations—the five other orderings,
and the six complex conjugate triples. On the other hand, if A; = A, = A; = Af, and also we have
one symmetric, one pair of mixed symmetry and one antisymmetric term in the product, the only
remaining freedom in K is a choice of three signs ( + 1), one for each type of symmetry, but here
there is only one K anyway.

9. THE RECOUPLING (RACAH) COEFFICIENT: THE 6-j SYMBOL

It is the purpose of this and the following section to define the various recoupling coefficients
and n— symbols which arise when Kronecker products of more than two ket-representations are
considered. Although in one sense no new ideas are introduced, the coefficients are funda-
mentally different from the 1-jm and 3-jm symbols in that these j symbols depend on sums of the
former in such a way that they are completely independent of the choice of basis. They are not,
however, independent of the separation of the multiplicities of the product, indeed they are much
better considered as generalizations of the 1-j phase and 3-j permutation matrices.

Consider the direct product of three ket-representations

|A181) | Agta) [Ag3). (9.1)
Using coupling coefficients and the methods of § 3 we reduce this ket belonging to the product
space (A;A,23) by a two stage process, and by two distinct routes. Either
[A121, Agla, Agig) = X (riadyatun|Ais; Apia) [(AAs) 715 Asatss, Agly)

712 A1z tag

= X L 19| Ay y; Agla) (PAT| Agaiia; Agis) [ (A Ag) P12 e, Agy TAT), (9.2)

719 A1p Ta TAT

or  |Aydy, Agly, Agigy = X ] (ras Agglng| Aala; Agta) [Ariy, (AgAg) T3 Aggtas)

Tag Azg 23

= I (ras Asalas| Agta; Asis) (S| Ay is; Asglag) |3 (AaAs) Tag Agy, s, (9.3)

T3 Mas Vo SILT
The ket-representation spaces of (9.2) and (9.3) are similar but the bases are different, There is
thus a unitary matrix which performs the change of basis between (9.2) and (9.8), but it is
restricted by (3.2) to being diagonal in the representation label (A = x) and independent of 7 = j.
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These recoupling coeflicients are also called overlap integrals or Racah coefficients and may be
defined by

l (A1 Ag) 119 A10, A3, TAT) = 30 {A;(A5A3) Ta3 A0, Ml (A1 2g) 119 A19, Ag, TAD IAl(AzA:s) TagAgg, SAL). (9.4)

723 A2s 8

Using these coefficients we can write the reduced kets of (9.2) in terms of (9.3) and use the
orthogonality of the kets to equate appropriate terms, to give

;_:. (r1aA1atia| Ay in; Agla) rAL| gty Agta) {Ar(ApAs) Tag Agsy SA| (AL Ap) 715 Aggy Ay TA)
Tz A1z Ua 7 . . . . . .
=2 (ras Aaslag|Agla; Aty (SAL|Ayiy; Aggla).  (9.5)

21

One can use the various unitary properties of the coupling coefficients to produce alternate forms
of this relation. However, rather than investigate the properties of recoupling coeflicients
directly, we shall define a similar function —the 6-j symbol —and study it.

We define the 6-j symbol in terms of a sum over four 3-jm symbols

Al AZ AS
{ﬁh Mo ﬂa}rl Farata
(For those groups where raising multiplicity indices is not a trivial operation, the following
property of the 6-j symbol would not be so simple.)
The complex conjugated 6-j symbol follows easily
AN (AR
{ﬂlﬂzﬂJ __{ﬂfﬂ§ﬂ§kummn

leading to the result that the 6-j symbol must be real for representations with real characters.

= (Ao ftg)y, iljzjs (1 A5 t3) I izjs (12 23) rahjz is (A1, A3)'r4i1 tyts, (9.6)

; (9.7)

TiTaTyTy

Derome & Sharp investigated the properties of the 6-j in detail, giving in particular the symmetry

properties, various recoupling properties, and the relation to group integrals of the form (5.12).

Permuting the columns of the 6-j symbol is simply performed by means of the appropriate

3-j interchange matrices, one for each of the four triples of (9.6); however, the phases do not

necessarily cancel in the way they do for simply reducible groups. The symmetries may be
generated by interchanging rows

{Al ;\2)\3} _ {/\ik tals

711797374

= , 9.8
Moy g g ll’Liglk /\2 /\:;k}nr;,'rzrl ( )

and interchanging columns

A A A . . .
e I IO W7 VA A W

Pa By P S ShSc Sa A

12ﬂ . (9.9
My Mo g TyreTy Ty
Clearly cyclic permutations are of the same form, but without the complex conjugations on the
left or the ¢’s on the right of (9.9).

The Racah back-coupling rule and the Biedenharn identity both generalize, the back-coupling

x m(i, w ﬂz/\a)s,,ram(@ /\1/\2/\3)&“:

rule being
)\1/\2)\3} .
= 14 Oy Ay b 75) O(A; Ay A7
{ﬂlﬂzﬁ% T "7y Ta }vji lqs'uz (/’Ll 2/t 2) ( 17278 4)

A2, A Ay piyv*
x (A V*r{?‘la} {11 } , (9.10
( 1/ ) My oV r'rrgry Azﬂ’z/"&rlrzr'r ( )

where again we use (6.9) and (8.10) to simplify the expression.
58-2
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The 6-j symbols are the elements of a unitary matrix

/\1/\29\3}* {/\17\2/\5

L =ttt
oy Moo fog T17aT3 1

,
raTae

22 usl{ (9.11)
Hs

My oy

17273y

Alternate forms of (9.11) are obtained by using the symmetries of the 6-j symbol.
We note also one recoupling relation among the 3-jm symbols not given by Derome and Sharp,
since it is highly suggestive of a means of recursive calculation of the 3-jm symbols

A1Ag Ay

oy f /1'3} = (Mﬂzﬂa)ni,hja (M1A2M3)rz jligj“ (1“1/“2/\3)'rahjzi3° (9.12)
172737

<A1A2A3>,mia{

The implied sums here are only in the multiplicity index on the left and j, j, and j; on the right
making it a rather simple relation, since a suitably ‘stretched’ choice of the representations
My b, and pg can reduce the sum to very few terms.

The recoupling coefficient of (9.4) can easily be written in terms of a 6-j symbol, by making

a correspondence between (9.5) and Derome & Sharp’s theorem 3. Four matrices K are
required, as well as some interchange matrices.

((AyA9) 712 A1, Agy Ta A| A3 (AgAg) T Agg, 71 A)
= I/\m: /\23I i K(Al A Am)rmsl’z K(AIZ A3A)
x K(A3A34)%171 by m((12) 235452 %)

Ay Agg A
x m((23) Al/\zATZ)Slztlz {/\i" /\2132/\2

K(AgA3255)%7es
m((132) A, A3A35)

7252

Sgly Sa3tag

} : (9.13)
t1atastasy

After that expression, let us pause before continuing with any more definitions. We use the
definition of the 6/ symbol to obtain a precise formula for all 6-j symbols with one scalar
representation. From the definition we have

A 2,1 . o

{ /1v11 ;2 f}m . = (A g 1)1751121 (w1Ag 1)1j1i21 (19 A3) 5" 10 (A1 A Ag)y,H 2%, (9.14)
374

The indices j, may be lowered in the first 3-jm and raised in the third by appropriate 1-jm symbols

which differ by ¢,,. The 1-jm (1) is unity, thus
A1 A7 % K 7, 4 114,14 * *
AL, 1 = (AFAT Ag)p 1,72 (A A5 A3), 0% by (A3 A2 1) 15,41 (AAT 1)1, g, (9.15)

r11lrg

Noting the number of permutations to bring the latter two 3-jm’s to their equivalent 1-jm’s we have

D2, (A3 A2 1) 15,1, 1 (AT 1)1 5,1 = A0 Ao 73 (A0),4, (A1) 1,5, (9.16)
A ) .

Therefore o = Ay, Ag| E (A A1 A3) 05 5,5, (A Ag Ag) o2, (9.17)
Ag ALl 1y, at2tta .

The first 3-jm requires some reordering, and the sum over 73 here cancels the factor |A3| in the
unitarity equation (3.3), giving

{TZ“} = A A ((12) 4 A0 A0) s
/12 /\11 11737,

=2y, | TEO(A1 25 A571) 0, (9.18)

The interchange matrix takes care of the zero result if the ‘triangular’ condition is not satisfied.
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10. THE 9-j SYMBOL

It is an obvious generalization of the previous section to define a recoupling coefficient for
a direct product of four representations, Ay, Ay, f; and u,

CAgAg) 1 Ag (poy fho) Ta gy S5 V3| (Atte) 51v1 (Agha) S2Vas T3V3)- (10.1)

We shall not discuss such quantities, although they reduce trivially to the recoupling coefficients
of the previous section for the case of A, = 1. Of more interest is the 9-j symbol defined by

ViVoV3 J T3 V1VoVs
515293

Ay A A5\ 1y A3,
{/41 Mot } Ty = {,“1 Mo ﬂa} = (A1 434;) 1811073 229 red1dads (v1vav3) 7a kg Koo Ieg
74797351 S3 53

X (Agfy V1), (A prg vg) s, 21272 (Ag g V3)s3i3 jaks, (10.2)

Of the two notations shown here for the 9-j symbol, we prefer the former (Vanagas 1971, p. 62)
over the latter (Derome & Sharp 1965), since it places the multiplicity indices with their products.
The latter is useful when the position of the multiplicity labels is significant. The representation
labels in (10.1) were chosen to display its relation to (10.2), but it is left as an exercise for the
reader to find the exact connexion between the two. It is to be noted, however, that the relation
is much simpler than in the 3-ket case, as the various products occur in the same order in the two
expressions. The 9-j symbol is much simpler than the 6-j by the further reason of the lack of the
awkward raising and lowering of the indices in the definition. Indeed, the 1-ym symbol is not
needed to define it. Consequently, the permutational symmetry of both rows and columns, the
transposition about the diagonal, and the effect of complex conjugation, are all rather more
obvious from the definition.

The 9-j symbol can be expressed as a sum of three 6-7 symbols of the form (Derome 1965, p. 75)

> || {/\11“1 Vl} {Azﬂz Vz} {A:s:”’:a Vs} , (10.3)
K VoV3K Jt,t,rg 8 \B1K M3 )ty ryty 5, \K A1y ritatass
but many permutation matrices and other phases occur.
The 9-j symbol, with one of its entries the identity representation, reduces to a single 6-;:

Mg |1y oo v

Adap* 1y = 1,73, 8,00,0,0%5) 00 Ar) (1000} (10.)
yv¥l J1 YULPYL) PArrars

51551

One could continue to define 3z-j symbols for » > 3 but it is the 6-f and 9-f symbols that have
been found to be most useful in physical applications

11, TRANSFORMATIONS OF BASIS

Before moving on to consider properties of a basis set of kets which has been chosen by means
of some subgroup structure, it is worth considering the consequences of any change of basis
within the representations.

Let the kets

[Ady), | Ay, ... (11.1)
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form one such basis, and the kets
[Ax1), |Axs), ... (11.2)

form another, neither endowed with any particular properties. There will be a unitary matrix
of dimension |A|, which performs this change. We denote the (ix) element as (Ai|Ax); that is,

) = 3 (Ad]Ax) | Ad). (11.3)

Kaplan (1962 a, b) studied the properties of such a transformation, in his work on the symmetric
group. Moshinsky and his co-workers (see, for example, Moshinsky & Devi 1969) have used them
for other groups, naming them ‘transformation brackets’. We shall refer to them as transforma-
tion coefficients.

The usefulness of the transformation coeflicients rests on three results—that there is a small
number of them relative to the number of 3-jm symbols, they are quite easy to compute using
projection techniques and given the 3-jm symbols for a mathematically convenient basis, one
easily transforms to a physically useful basis. The reasoning for the last is as follows.

We rewrite the basic coupling equation (3.1) in terms of the new basis

[Ay i) [Ag25) = %‘,'(r/\i]/\lil; Agtgy| (AL Ag) TAT) (3.1)
= 1% QA <A2x2]/\2i2>|/\1x1> |Agxa)
= 3 (r/li[)llil; Ayiyy (Ax[Ai}[(Al/\z)r/\x) (11.4)
rAix

Re-expanding the product |A; ;) |A,4,) in terms of the coupling coefficient for the new basis, and
using the orthogonality of |(A;A,) rAx) gives

3 A 2| Aq 8D (A o] Ag i) rAx| Ay g5 Agity) = 30 {AR| QD) {rAi| A 35 Agiy). (11.5)
Note that we have used the same separation of the multiplicity, indeed one would have to make

a special effort to change it, via (3.2). Using the definition and properties of 1-jm and 3-jm symbols
gives also that

(/\1/\2/13)m1x._x3 = (AlA2/\3)Mli2i3</llill/11xl> </12i2|/\2x2> (/13i3|/\3x3>. (11.6)

The unitary properties of the transformation coefficients will ensure that all reference to the
basis will disappear in the 3-j permutation matrices and the 6-j and 9-j symbols.

Kaplan’s study of the transformation coefficients goes further than this. He studied them for
the transformation from the Young—Yamanouchi basis for the symmetric group (§; = S;®S;_;)
to an arbitrary pair of symmetric subgroups ($; > S,®S,_,). He referred to them as recoupling
coefficients, which can be seen to be somewhat of a misnomer. However, the representations
occurring in such a basis are those given by the outer product of S-functions (the Littlewood—
Richardson rule (Littlewood 1950, p. 94)), and this rule is also the one giving the Kronecker
products for all unitary groups. One would thus expect these transformation coefficients between
chains of symmetric groups to be related to the n-j symbols of Uy. Kramer has found this to be
the case (Kramer 1968) and uses his results to explain the Regge symmetry of the 3-jm symbol
of SU, (Kramer & Seligman 1969).


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/| \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TENSOR OPERATORS FOR CHAINS OF GROUPS 567

B. CHAINS OF GROUPS

In part A of this article, we have referred to the ith basis ket |A¢) of the (irreducible) ket
representation A of the group G. The index 7 has had no significance other than to enumerate the
basis. However, where we have used the group R; as an example the index m has had a very
special significance, namely it is the z-projection of the angular momentum j. This labelling is
such that the basis kets are invariant under rotations about the z axis—that is, under the sub-
group R,. This gave rise to certain special results which we now generalize in the following
manner.

12. CoUPLING (ISOSCALAR) FACTORS

Consider the space of the irreducible ket representation A of dimension |A| of the group G.
This is the space of kets where operations on any ket by any element R belonging to G gives
another ket of the space. Let H be a subgroup of G. The restricted number of operators R € H will
allow (in general) the representation space A of G to be split into a sum of subspaces g4, f,, ..., €ach
of which is closed under the action of H. For G = R; and H = R,, the subspaces are all one-
dimensional, and none occurs more than once, but in general the irreducible subspaces may
occur several times and be of dimension larger than one. We write the reduction as

G>H: A>3 a,u
n

and refer to a, as the branching multiplicity for the representation p, where «, has no simple
connexion with the Kronecker product multiplicities, 7, as can be seen from its dependence on
the choice of the subgroup H. For example, for G = R; we could choose H to be the identity
element of R;, and then all the subspaces would be indistinguishable (and scalar) under this one
operation of H, and the branching multiplicity would be «y = |j| = 27+ 1. When a multiplicity
does occur, the subgroup cannot distinguish the properties of the appropriate subspaces and an
ad hoc classification is required. We denote this by ¢ = 1,2, ..., c.

Let us ignore the possible subgroup structures for /, and choose any basis |ui) for each of its
representations. The collection of bases for all the ket representations # of H contained in the ket
representation A of G will form a possible basis for A, we denote a typical basis element by

|Aauz). (12.1)

Thus, where the summations were over the single index ¢ before, they will now be over the
collection aui. On the other hand, since the kets |Aaui) form a basis for ket representations of the
two groups we have, (2.4),
Op|Aaui)y = 3 [Aqpui’y w(R),; if ReH, (12.2)
=

and Og|Aauiy = 3 |Ad'wWiYA(R)y i, 0 if REG, (12.3)
o
where (12.2) is a special case of (12.3) and thus
AR) gty arprr = o Opuwtt(R)yy if ReH. (12.4)
Likewise, from the definition of the coupling coeflicients for both groups, we have

[Ayayperty) [Agaspiaty)y = §.<Sﬂilﬂlil;ﬂ2i2> [(Ayay pir; Azap i) spiy, (12.5)
i
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and [Asay oyty) |As s piata) = M%:ﬂ‘<r)taﬂi|)tlalﬂli1; Aga fiota)| (Ay Ag) rAapisy. (12.6)

In the first equation (12.5) we have reduced the product ket with respect to A only, whereas in
(12.6) the ket is reduced with respect to the larger group. The vectors

I (Aray piy, Agagpiy) Spiy (12.7)

form a basis for the ket representation space x of H. However, we must take linear combinations
of these spaces to form spaces irreducible under G

[(Agay g, Mgty phn) spiiy = T%l {raapd] (Ayay pyy Aya o) Ui (AyAp) TAGuT). (12.8)

Since this transformation is, from the point of view of H, of the form (8.2), the coefficients must
be independent of 7. Therefore, we rewrite (12.8) as

[(Ayay oy, Agaa o) spiiy = E (riaps|Ayay pu; Agas piod| (Ay Ag) rAaui). (12.9)
a
The unitary properties of these ‘isoscalar factors’ follow immediately

2 <7‘/\(Z/LSI /\1 a1y /\2 a2ﬂ2> </\1 ai/"i; /\Zaéﬂé era/’”,> = 3111 ay é\az a; 6ﬂ1 1 é\[té ﬂ2883'3 (12' 10)

ria

2 .\ (rdapus| Ay ay fys Ap @y o) SAL @y Joy; g @a fly |1 A0 sy = 8,00 0330 B (12.11)
SQy fa Qg oo
We can use the reduction (12.9) to complete the reduction of (12.5), which is then to be compared
with (12.6),

Crdap| Ay ay pryiy; Aa@p o) = 2 (rAaps| Ay ay fys Mgy i) {Spt| py iy ; oty (12.12)
S

This is Racah’s result (1949) for the factorization of coupling coefficients defined for a group
chain. It must rate as one of the most important results in the theory of coupling coeflicients.
(Consistency in terminology demands that isoscalar factors be called coupling factors.)

It is instructive to again look at the group R,. Using representation theory only, we see that
for the group chain R; © R,, all multiplicity labels disappear, and also that the coupling coeffi-
cient for the subgroup R,, is at most a phase factor. Thus, these isoscalar factors reduce to the
usual Clebsch—Gordan coefficients, but where we have the additional restriction that m = m; +m,,.
This follows from the character theory of R,, and is thus a consequence of the subgroup chosen
for the basis, and not a consequence of the coupling coeflicients for R,.

13. 1-jm AND 3-jm FACTORS

The Racah factorization lemma just derived suggests a similar factorization of the 1-jm and
3-jm symbols, but first a few words on the notation.

The tensorial notation of part A has largely outlived its usefulness, and we return to the usual
notation. When we wish to show the subgroup structure, we write the labels corresponding to
the different groups on different lines

A A A\
(A1 A28)ray g 1y g iy g gty = (41_/‘1 daftz 033“3) . (13.1)
41 2] i3
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We write the expression equivalent to Racah’s factorization (12.12) as

A ALY .
NoA A .
(al_/h Gy ta aa_ﬂa) =E( Lo 3) (”1 2 ‘.‘3). (13.2)

i i i s \Qifby Qgflg A3la/s\l1 13 13
1 2 3

This 3-jm factor will then have the unitary properties

&r r
l_/lsl(/‘l Ay /‘3) ()‘1 Az /‘3) = 8 0 Oma O B iBuvs  (13.3)

ror rot aja’agas 1940 12
Msaslﬂal A1y Gty A3y s \Ai . Aaflg A3ls/ t 2okl

Al (A A V(A A A
LEL‘( 1 2 3) ( 1 2 3) = O O g a3 Oy 25 (13.4)

7
alﬂlazﬂzslﬂfil a1 by Aoty Aglg)s \G by Qafbe  A3fis/ s

Let us now, as an exercise, use the definitions of the 3-jm symbols (5.1), the coupling (isoscalar)
factor property (12.12) and the definition (13.2) to calculate the correspondence between the
coupling and 3-jm factors. In so doing we shall produce a 1-jm factor.

For the group G we have

Ay Ay A3 \"
(rAapi|Ayay pryiy; Aga fials) = Z,I)‘I—%K(’\lAz/\)rrs(’\)a”i’a“”ai”(%/‘1 Qg oy asﬂa) . (13.5)

73 Qg 3 3 i]_ z-2 7:3
Factorizing both the coupling coefficient and the 3-jm symbol gives
X (raps| Ay ay gy Aq @ fho) (SPE| pry B3 Pato)
S

* \ 73 EN
=S AR et (N M P e )

7385 O flals Ay Golty  Agzlg/s, i Iy 1
.. *\ Sy
= 2 (raaps| A ay puy; Ay fho) IﬂI%K(ﬂlﬂzﬂ)ss,, (p)ia (/2 /11,_2 /;4) > (13.7)
884 Vs 2

where the second equality comes from the definition of the 3-jm symbol for the subgroup H. By
using the unitarity (5.5) of this same symbol many of the sums are removed, namely

> <M“/“l Ay @y g3 Ay i) lﬂl% K(ﬂlﬂzﬂ)ss4(ﬂ) U
£

* \ 73
S IA]%K(Al/\zA)Wa(A)aﬂi,aaﬂsia(Al Ay A ) P (13.8)

8384 " g p**
T3 s fb3 Ts Sy a1y Aolbg  aglig S3

The use of the unitarity of K(u, o) and the 1-jm symbol (u) leads, after a change in notation, to

ANA /\*)V

oy Aoty a'p¥
(13.9)

(Aaps|Ayay pigs Aoapio) = 3 |AJE || K (A A5 R),0 Ky o ) (A) % “"‘*(
rsa

2
s

where the factor
(X) e apt (A)ant, V(1) g (13.10)

is clearly a 1-jm factor that could have been defined either as a special case of the 3-jm factor or by
an expression analogous to (13.2). This calculation sheds light on the 1-jm factor, namely that
it is of the form 8, . This can be traced to the isomorphism between the representation x4 and its
complex conjugate—for all groups. (For Ry, since m* = —m, we have immediately that
(/) mm: = & Sp—m Where only the phase is to be found.)

59 Vol. 277. A,
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Assuming a ‘sensible’ choice of the separation of the product multiplicities in the coupling
coeflicients for both groups (see equations (5.2)), (13.9) simplifies enormously, namely

1 1 oo A A AFAT
Craaps| Ay ay fiy; 2285 fs) gensivre = l/llflﬂl‘fz’ (A)u e ( .y 2 ) . (18.11)
a

!’
apy s AP

The symmetries of the 3-jm factor follow immediately from those of the 3-jm symbols; for
example,

- (M A A )’J _ ( Ao X A )’

%’m(n, /\1/\2A3) " m(ﬂ: ’[ullumua)ss (allul Aoty 33/ s Aala Aoty Aol s’ (13.12)
where (abc) is the permutation = of (123). Note the occurrence of the inverse transformation in
the subgroup. This will only be of consequence for cyclic permutations of non-simple phase
representations.

Equation (13.12) when used in (13.9) gives a much more general statement than Racah (1949)
of the ‘reciprocity’ of coupling factors. His equations ((46)—(49)) are valid only for multiplicity
free products of representations with real characters. Assuming the ‘sensible’ phase choice of
(5.2) we have, for example,

Qg tg; Ayayiny|rAapsy = O(A;AgAgr) Oy oo i 5) Ay figs gy o rAapss). (13.13)

It is suggested that the reader obtain the expression for the (13) permutation by substituting the
inverse of (13.9) into (13.12).

The many relations of §§9 and 10 between 6-j and 9-j symbols and 1-jm and 3-jm symbols,
can easily be written in terms of 1-jm and 3-jm factors. The 6-j and 9-f symbols being independent
of the basis do not factorize, but the factors can be used to relate the symbols of a group to those
of a subgroup, for example, (9.12) becomes

2(/\1 A /\3)’4{/11 A A

4101 4309 303/, \M1 Mo ﬂ3}rlr2rar4

%
= 3 () 0rPr VLPE (pug)baPe 3 PE (1) b5 bép:’;( A Lo s )r‘

rok
81,8485 by ba bs a0 byps  byps
by b3 b3 p1 P2 ps

« Y21 Ay ws \"( Mo Ay \'efoy oy Oy
b .0, bipE) \bip¥ b aso
1P1 G202 03p3 1P1 0aP2 4303/ 5,\P1 P2 P3ls;s,ss,

81

. (13.14)

Sg S3

The notation has been changed slightly here, A and x# denoting representations of G, and o and p
of H.

14. CANONICAL CHAINS

The presence of all the labels in the above two sections used to account for the possibility of
branching multiplicities in the imbedding of / in G, gave a rather awesome aspect to the equa-~
tions. The equations simplify considerably when no such multiplicities occur, and we shall loosely
refer to this case as a canonical imbedding.

Baird, Biedenharn, Louck, Moshinsky and their co-workers have done much analytic work
on the properties of these coefficients for the canonical chain of the unitary groups U,, = U, _; = ...
(for references see Louck 1970, Moshinsky & Devi 1969). Sharp (1970) and Wong (1971) have
used their techniques to look at the cases R, = R,,_; and Sp,, = Sp,,_, (the second is not canonical).
We restrict ourselves to a few comments on the 1-jm factor.
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The 1-jm factor

In the previous section we remarked that the 1-jm factor took on a particularly simple form
for the canonical case

(A e = O(Ape) 8 (14.1)
From the permutation symmetry we obtain
O(A*p*) = $2,0(Ap). (14.2)

Ifboth A and  are real, then clearly ¢, = ¢, or A does not contain . Baird & Biedenharn (1965)
have investigated the 1-jm symbols for unitary group chains, and it is a trivial matter to factorize

their result
for SU, > U,_10(Ap) = (=) Muax™, (14.3)

where p is a partition of m and g, is the representation of greatest weight contained in A. This
expression must be compatible with (14.2) for real representations, but it is easy to show that it
is not compatible with the choice of ¢, wanted in § 8, equation (8.10). As Baird & Biedenharn
note, there are phase choices to make in obtaining (14.3) and we would recommend that the
choice was made to make the 1-jm symbols compatible with (8.10). Baird & Biedenharm obtain
their phase by requiring maximal states positive.

C. TENSOR OPERATORS

The previous parts have defined and discussed the ket representations. They used the idea of
the separation of the space into the irreducible subspaces, together with elementary group and
vector space theory, to define coupling and recoupling (Racah) coefficients and jm and j symbols.
(These are all related to the elements of the matrices which perform various changes of basis in
the Hilbert space.) By keeping the approach rather abstract we were able to derive several new
properties of the coefficients, and to put known properties in a more general framework.

Although the above ideas of ‘coupling’ kets have certain direct applications in physics —the
coefficients for the three dimensional rotation group, R;, perform the ‘addition’ of angular
momenta —it is clear that the obtaining of the matrix elements of operators is the central problem
in physics. For example, one must know the matrix elements of the energy and the transition
operators. It is the purpose of this part to study such matrix elements. The key theorem will be
proved in §16. This is the Wigner—Eckart theorem. It states that the matrix element of any
operator between any pair of vectors, is proportional to a 3-jm symbol (or coupling coefficient).
This is if we choose the suitable group theoretic basis. We chose the basis for the ket space in § 2,
and shall do this for the operator space in §15. But first we must discuss one or two basic
properties of the space of linear operators, in particular its reducibility under the group, in order
to lead up to the definition of an irreducible tensor—operator representation space.

In this part we shall extend the terminology ‘ket representation’ to ‘tensor representation’,
although the group elements are not (and cannot be) mapped homomorphically to the kets and
tensors. Instead the kets and tensors have well defined —standard —transformation properties
under the group. Their transformation properties are such that they give rise to irreducible
matrix representations. Other authors have used the terms irreducible tensorial set (Fano &
Racah 1959) or basis for an irreducible representation (Moshinsky 1963).

59-2
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Owing to the existence of the matrix K(A;A,A;5) linking the coupling coefficient and the 3-jm
symbol, in this part we shall avoid the use of Wigner coupling (Clebsch—Gordan) coefficients by
doing all our coupling with jm symbols. This is equivalent to insisting on the sensible choice of
phase in (5.2), and hence no generality is lost.

In § 16 we shall discuss the Wigner—Eckart theorem and the definition of an arbitrary tensor
operator. Section 17 is devoted to a discussion of some of the problems associated with choosing
linear combinations of tensors to produce unitary operators. A special and important class of
unitary operators are the operators Oy associated with the action of the abstract group on the
Hilbert space. In § 18 we use these ideas to derive relations between the 3-jm symbols and the
representation matrices.

Judd (1963) and Vanagas (1971) in their discussions on atomic and nuclear structure calcula-
tions find that they often are required to evaluate matrix elements of products of tensors.
Section 19 produces some generalizations of formulae obtained by these authors for Ry and S,,.

In part B we considered some of the consequences of choosing the basis kets using the action of
a subgroup. In §20 we again consider the consequences of such a choice. The properties of
arbitrary tensors are not quite as simple as one might expect, especially with regard to unitary
linear combinations. On the other hand, such considerations lead to some powerful results in
terms of the group operators.

15. TENSOR REPRESENTATIONS

Given an N-dimensional linear vector space, it is well known (Messiah 1965, p. 62) how to
define a set of linear operators. The full set of linear operators forms an N?-dimensional linear
space. The positive-definite scalar product of a Hilbert space allows an identification of the space
with its dual

(la))* = <al,

and the construction of an orthonormal (in addition to a linearly independent) basis

Gliy =0y (hj=1,2,...,N).

These concepts were used in part A, but we may also immediately choose a complete, linearly
independent basis for the operator space, a typical element being written

|5l
We refer the readers completely unfamiliar with the concept and properties of the operator basis
so defined, to Messiah (1965), p. 250.

Following the procedure of part A, we use the action of a finite or compact (but otherwise
arbitrary) group G, to find a basis |xA¢) for the Hilbert space. x serves to enumerate distinct
subspaces with the same transformation properties given by the representation label A and 7 is an
arbitrary choice of basis within these subspaces (see § 2). The action of ReG is given by

Og|xAi) = 3 [xAJ) A(R) ;. (2.4)
J
It follows that one may choose as a basis for the linear operators, the operators

R (g Agty). (15.1)
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The action of the group on these operators is given by
OR|#12,71) (%2 Aais| Og—1 = Og|2,A13;) (O%—1|%22575))"
= jz | %11 51) (%3 Az Ja] /\1(R)j1il/\2(R)j"i2~ (15.2)
13

The matrix A,(R)%% is similar to the matrix A3 (R);, ;, and may be transformed into it by using
the 1-jm symbol (4.4). Thus the basis operators (15.1) transform as the Kronecker product of the
two representations A; and AF.

We now take linear combinations of the above operators in order to obtain operators that
transform as an irreducible representation. The combinations

(rAi (2141, %2 45) )y = l/\l% (]1‘3(/\1/\/\2)81:1%2 ETSY (x27\2i2| (15.3)

with U any non-singular matrix independent of 7, ¢, and 7, will form a linearly independent set
which will also span the space.
The transformation property of the operators of (15.3) follows from (15.2), (4.4) and (5.7).

Og(Ai (221, 2545)) iy Op—1 = (rAj (2171, %3 A5) )y A(R) 35 (15.4)

By setting the matrix U of (15.3) to the unit matrix, the definition reduces to that of Judd
(1963, pp. 71, 101) for R5. One is able to use as U the various matrices of part A to effect changes
in the order of A; A, and A in this definition or to use the coupling coefficient (5.1). We shall take
U,, = 0, as our definition for our basis for tensor operators.

Most authors (see, for example, Messiah 1965, p. 572) refer to the set of operators
(rAi (x4 Aq, %5 A,)) for all ¢, as the tensor, referring to each operator as a component. However, we
prefer to use the term tensor for each operator in this irreducible basis (with respect to the
group (). The set for all 7 is referred to as basis for a space of tensors transforming as A or simply
as a tensor representation. This parallels the terms used for the representation kets.

Thus a standard basis tensor is defined by

(rAi (%, Ay, %34,)) = lAl%(AlAAZ)rhiizlxlAli1> (Ha Agly|. (15.5)

If the dimension of the Hilbert space is N, then we have N2linearly independent tensor operators.

16. THE WIGNER-ECKART THEOREM

The matrix element of the basis tensors (15.5) between arbitrary (basis) bras and kets follows

trivially ) )
€Y le (rAi(x Ay, %2 Ay)) lx,'z Aylp) = W% (A /\Az)r“ﬁz 3x1xi 3,\1 X 3302 z} 3/\2 Ay (16.1)

We now define, as is usual (Stone 1961 ; Messiah 1965, p. 1094), a tensor operator as any linear
combination of the basis operators that retains the transformation property (15.4). Thus @}
is said to be a tensor operator (member of the tensorial set Q%) if

We reverse the argument that led to (15.4) to obtain the resolution of @} in terms of the basis

tensors. We have
Q= 3 qrAxy A xa ) (i (x5 A, 2 45)), (16.3)

1Ly Ay Ty Ay
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where the coefficient ¢ depends on all the labels specified. The matrix elements of this generalized
tensor are thus given by

Aty l Q7 lxz Aglyy = (A4 /\/\2)/'%@'2@1 /\1” QM ” X3 gD, (16.4)

where the implied sum is only over r. The number {x; ]| Q¥ ||x,A,) is known as the reduced
matrix element and is given by

A @2 %2200 = |A|Eq(rAxy Ay 2, 2,). (16.5)

These two equations are a direct consequence of the fact that the operators of (15.5) are a complete
basis for operators acting on the Hilbert space.

Equation (16.4) is known as the Wigner-Eckart theorem, and is precisely the result given by
Messiah (1965, p. 1094). In terms of this language the reduced matrix element of a basis tensor

is given as )
<x1)(1” (T’/\(Xi/\i, X;/\;)) 7'”.%2/12> = I/llgarr’é\xlwia)ll)liawzxg 6@/\&' (166)

17. UNITARY OPERATORS

For many purposes it is useful to have unitary operators. We can make the distinction between
operators which are unitary over the whole Hilbert space, and those which are unitary over some
specified subspace. The basis operators of (15.1) are clearly not unitary in either sense, except

for those of the form
EZDXEZUR (17.1)

which are unitary over that one dimensional subspace spanned by the ket |xAz).
Some of the linear combinations of (15.5) will be unitary of a larger subspace. We have (see
Messiah 1965, p. 254, for adjoint operators on a Hilbert space)

(A0 (xy Ay, %5 A0)) = |A|E (A1 AN,), % |2y Agi) (i1 Ay (17.2)
We used the property of the complex conjugated 3-jm symbol

¢/\1(/11/\/\2)si1ii’ = (Al)ilj(/\ik AX) % = {(A3 A5) 5%, }F.
Thus (not summing over ¢ or )

(rAe (1 Ay, X A) )t (rAd (%1 Aq, o Ap)) = ]Al ¢A'1(/\1 A/lz)riliiz()(l AQy) T’iliiz 8«;1 @y 6/11 Ay lx1 Aty <x1/\1i1]

= 85513023’\1)% Z |y Aq 7y ) {xq Ay (17.3)
%
The term _ .
2 22 Agdy) ey Ay (17.4)

is the unit operator of the ket representation space x;A; and hence all operators (all 7A which
occur in the Kronecker product A; x Af")

(r i (%, A4, %, 44)) (17.5)

are unitary operators over the representation space x; A;. It was to ensure this that the normaliza-
tion |A|# was included in the definition (15.6).

Itis clearly impossible to simply add operators of the form (17.5) to obtain operators which are
unitary of the whole space —with the exception of the scalar (identity) operator. This is because
a given symmetry type 7A will not always occur in every product A; x A}’ (excepting 7 = 1, A = 1).
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We note that as also in many equations of the previous parts, the right-hand side of (17.3) includes
the condition that the appropriate triple Kronecker product contains the identity.

18. THE GROUP OPERATORS AS TENSORS

Consider the operator Oy associated with the abstract group element R. Because Op acts
within each ket representation, and is a unitary operator, it follows that it is a linear combination

of the operators (17.5)
Op= X UR,rA X)) X (rAi(x, A1, %, A1) (18.1)
AA

Xy

The independence of U from x, follows from (2.4). (Note there is an implied sum over r and 7.)
Comparing the action of both sides of this equation on an arbitrary ket, gives

AR); = X UR, rANT) | |F(AXA),F s, (18.2)
g
or, by using the unitarity of the 3-jm
U(R, rAT") = |X[E (XA A (R);:. (18.3)
Alternatively, multiplying (18.2) by its complex conjugate and summing over 7 and j gives
3 URrANT) U(RyrAXN'd")* = |A|. (18.4)
A’
Consider the transformation property of both sides of (18.1)
0g0r0g-1 = X U(R, 1A Ai) Og X (rAi(xA4, xA1)) Og, (18.5)
A A x
thus Ogps—1= X UR, 1A, A0) A(S);; X (rAj (%A1, x24))s (18.6)
A A i
and USRS, 1A ) = U(R, 1A A1) A(S) ;. (18.7)

This is a statement concerning the relations between the different elements belonging to the
same class of the group.

By studying the group algebra, one is able to make definite statements concerning this problem.
For example, class sums are invariant under the group and thus we must have for all R and A

|U(R, 1A11)] > 0. (18.8)

We shall return to the study of group operators in § 20.

19. COUPLING TENSORS

Itis clear that the product of any two tensors P} and Q% may be reduced to a sum of irreducible
tensors by using the 3-jm symbols. Various formulae may be derived to relate the reduced matrix
element of the product to the reduced matrix elements of P and @. Judd (1963, p. 71) carries out
the analysis for R, to later use the results extensively in atomic structure calculations. Vanagas
(1971, p. 61) does likewise for §;, using his results for nuclear computations. Our results reduce to
the above, except that Judd uses the Condon and Shortley phases (Clebsch-Gordan coeflicients)
for coupling both kets and tensors. His results thus reduce to ours only if one inserts the matrix
K linking definitions (5.1) and (5.2). Vanagas uses our phases but different normalizations.
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Thus we define coupled kets by

| (%1 A1 25 20) 12T = |A[3 a (A A A)" 0% 5]y Ay i) |43 Agtn), (19.1)
and tensors by
(PRt = A2 42 (A A, A) 0% P Q2. (19.2)

We now evaluate the coupled tensor’s reduced matrix element in terms of the reduced matrix
elements of the uncoupled tensor. We do this, both for the general case, and for a very important
special case.

In the general case we assume no information concerning the reduced matrix elements of
P and Q. We have for the general matrix element (using (16.4) and (19.2))

{2y ill {P *1 QKz}TI'é lxz ’12 lgy = (/\1 K/lz)silk@(% /\1" {P K‘ka}m " %3 Ap)
= |K|¥ P(Kykqr) Tk (g Ayt | Pi Q2 |42 Agts). (19.3)
The uncoupled matrix element may be expanded by summing over the complete set of bra—kets

<x1A1i1| P lxz/\zi2> = g <x1A1i1| P |*’Mi> <x/\z] Qs Ixz/lzi2>- (19.4)

Applying the Wigner—Eckart theorem to this, twice, and using various properties of the 3-jm
symbol, one can combine (19.3) and (19.4) to give

(g Ayf| {Pr@Qrafree ||y Ay = J;ZA [K[%¢Alm((12) A*KzAz)rzr;m((23) Af KIA)rlri

Ky K* Ky
/\1 A AJT&;STIT'
X (g Ag ]| Prama | 2A) eA || Qe || Ag). (19.5)

x m((123) KIKZK*)W»{

Note the presence of the two multiplicity indices (r and s) in the reduced matrix element of
a coupled tensor. The index 7 gives the coupling multiplicity (k, x k, > k), and the index s arises
from the Wigner—Eckart theorem (k x A, 2 A,).

The various special cases of (19.5) which Judd and Vanagas have found to be useful arise
when the operators P and @ have non-trivial actions on certain subspaces only. Let the kets of
(19.5) be kets belonging to a product space, constructed from two distinct Hilbert spaces. Let
P and @ each act in only one of these two component spaces. For example, let P and @ be orbital
and spin operators respectively, and let the kets of (19.5) be the coupled product of orbital and
spin kets. The general matrix element can now be written

{A1A9) 1y /\il {PraQ~ i l (o) T2 147 (19.6)

For brevity we have omitted such additional labels as may be required for the complete specifica-
tion of the kets |A,7;), etc. We assume that the operators act so that

PR | pygys #agey = (Pit|pagy) (QF |#272))- (19.7)
These assumptions enable us to evaluate (19.6) in the following fashion
(Axp) sikj<(/\1 Ag) 1y A|| {PraQa}tes | (pex o) T2
= |A, py Kl% P ¢,u(A1/\2")r1i1i2i(K1 Ko K)tklk’k(ﬂll‘zﬂ)r”M”j(’hil, Azizl PR Q12| oy g1 aday- (19.8)
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The uncoupled matrix element on the right of this equation simplifies, using (19.7) to the product

</\1i1| P |,“1j1> <A2i2| Qﬁ ‘ﬂ2j2>-

A 9-j symbol is given if we use the Wigner—Eckart theorem on this last expression and collect the
various 3-jm symbols together. Hence

AL Ay ARy

(A1) 7, A H{PK‘ ka}m ” (B fog) To o) = |/\, My K|% {Kf K;k K }t
A A AR
$1 Sy S

x (A4 ”PKISI H:“1> (Ay “ Q 2| pgy.  (19.9)

There are three physically important special cases of this in which the 9-jreduces to a 6-7 —either
when one of the two operators is not present, or when they are coupled to give an overall scalar.
They may be obtained from (19.9) by setting the appropriate representation to zero and using
(10.4) or by direct evaluation.

It is worth remarking that if the Hilbert space # is formed from the tensor product of spaces
o, and 4, then a complete basis for the operators of 2 can be constructed as the tensor product
of the operators of 5 and ;.

20. A SUBGROUP BASIS

In part B we discussed in detail the consequences of choosing the basis for the ket representation
by means of a subgroup H. In particular, this led to the Racah factorization lemma and the
definition of coupling (isoscalar) and jm factors. We note that when extending these concepts to
tensor operators, one must be careful to work with a complete basis set for the Hilbert space.

In part B, the basis kets were labelled by five indices ¥ A @ ¢ ¢ (A and p being representation
labels of the groups G and H respectively, and a being an index specifying the branching multi-
plicity). x played the same role for G as before, but the three labels x A @ play this role for H.

A complete set of linear operators for the Hilbert space is (15.1)

lxl/\141/1*1i1> <x2/\zazﬂzi2|- (20.1)

Linear combinations are taken as in § 15, to give the standard basis tensors of A

s
(st (%1 g @y fon, %o Agia fh)) = | o] ¥ (1) %8 (:;‘11 '? ':2) |21 Ay ay pry @) (xaAaaapists],  (20.2)
or of G
AF A Ay \7 . .
(rAapi (%, Ay, %5 25)) = |AB(A)mmivainis [ghu)  ap  agpy| 1%121a100101) (HaAgapiats],  (20.3)
i1 i iy

where it is to be noted that all labels in (20.2) are essential. (We are now using the extended
Wigner notation for 8-jm symbols.) We can use the 1-jm and 3-jm factors to write the tensors of
(20.3) in terms of those of (20.2)

(Papi(r o, 1)) = N a4 e (2, 2

.
, S (%1 Ay @y ey XaAga . (20.4
aut ap azﬂz)s(ﬂ( 1418y [y, X2 Agaaft)). ( )

The implied sum here is over a] a; 4, a, 4, and s.

60 Vol. 277. A.
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It is important to realize that we are only able to derive (20.4) because the tensors of (20.2)
for H, not only already contain information on G, but also span the same space. An example
when this is not so, are the operators defined for H by (17.5). These operators are insufficient to
enable us to construct such operators of G.

The extension of the Racah factorization lemma to the Wigner—Eckart theorem is straight-
forward. A tensor defined by (16.2) or (16.3) with respect to G, will also be a tensor with respect
to H. The Wigner—Eckart theorem applied to both groups gives,

A QA (20.5)

8

A A )\2)

s a Aaus|l g A a = (A al/‘l:“iﬂf( )
(o1 Aqay ]| Q145 [ x5 A5 110 = (A1) aps ap  ayp,

Let us look again at the group operators. Consider (18.5) applied in both G and H, but only
for Re H. We cancel the 3-jm symbol for H as well as the representation matrix #(R), to give

V(R,sup't"y for ReH, (20.6)

% ’ d
URrAXNaui’) = 5 A} ]ﬂ]—%-(/\)aw*( AT oA ")
. abus

bp* a'w ap)s

where we have indicated all sums explicitly. This equation suggests that if we know how to write
some group operators in terms of irreducible tensors, then we will be able to extract the 3-jm
factors. Vanagas (1971) uses this technique to great effect for S,,. He studies the group-algebraic
properties of the interchange operators (r,7—1), the matrix elements of which are known by
Yamanouchi’s construction (Hamermesh 1962, p. 214). He produces sufficient equations to
solve for all the 3-jm factors required in his nuclear calculations.

21. CONCLUSION

In this article we have carefully distinguished between properties derived for the coupling
coefficients and tensor operators of all (finite or compact) groups, properties true for special
groups, and properties that may be obtained by applying requests of simplicity. The matrices U
of (3.2) and K of (5.1) are fundamental in this regard. The matrix K is the generalization to a non-
multiplicity free group of the familiar arbitrary phase of the multiplicity free case. To emphasize
this it is appropriate to refer to it as the ‘phase matrix’.

As this article has developed, various flaws have become apparent in the various notations
that are often widely used. In particular, we would strongly recommend the adoption of the
name 3-jm symbol for what is usually called a 3-j symbol. Indeed to be fully consistent with the
terminology, the 1-j phase ¢, should be denoted (for it relates A and A*)

$r=1{A} 2y symbol,
and the 3-j permutation matrices

m(ﬂa Ay AZ /\3)7'3 = {75’ A1A2/\3}rs 3'j SymbOI‘

Thus a 9-j symbol with one representation the scalar, reduces to a 6-j symbol (10.4), a 6-j to a 3
(9.17) and a 3+j to a 2-j (5.10). All the n-j symbols are independent of the bases chosen for the
representations and are written with curly brackets.

The jm symbols are quite different. They are dependent on the basis, factorizing for a group
theoretic basis. Round brackets are used to display this difference. It would be sensible to rename
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the 1-jm symbol a 2-jm symbol. This is because the symbol depends on two representations and
their bases, we would then use the notation

Mia= (;

A* .
. ) 2~jm symbol.
ho I

We then have that the 2-j symbol gives the reordering property of the 2-jm symbol, the 3-j
symbol for the 3-jm, 6-j for the 4-jm, 9~j for the 5-jm, etc. For example, one can see that the coupling
coefficient of (9.4) relates different coupling schemes between the four representations A, 4,2,
and A. This viewpoint is very nicely expressed by figure 22 of Agrawala & Belinfante (1968).

Various results in this article suggest that all j symbols and jm factors can be chosen real. The
restrictions imposed on j symbols by choosing the multiplicity metric, 4, unity, and the restric-
tions of a subgroup on the jm factors suggest that real coefficients may always be found. The
author has, however, been unable to prove this is always the case, or find evidence that a particular
coefficient is necessarily complex.t Harnung (1973), in his discussion on the icosahedral group,
remarks that some workers claim complex coefficients are necessary, when they are not, and
others assume reality without proof. Consider the following example.

The product [100] x [110] of SO is the product of two orthogonal representations, and con-
tains four irreducible components, the orthogonal representations [100] and [210], and the
complex conjugate pair [111] and [11-1]. If one chooses bases of [100] and [110] to give real
representation matrices (for this is possible) then it is clearly impossible, using real coupling
coefficients in (3.6), to project out complex representation matrices. However, we noted in the
example of § 4, that it is not usual to choose real representation matrices anyway.

Further evidence for this reality hypothesis comes from the work of Biedenharn e al. (see
appendix) on Uy and SU,. Their work produces real coefficients for all products in these groups.
Both orthogonal and complex representations occur here (although one needs to go to SU; to
obtain all three kinds of representations).

We would strongly urge that all calculations are carried out by using the ‘sensible’ choice
of (5.2) for the coupling (Wigner) coefficients and the coupling (isoscalar) factors, and not the
Condon & Shortley (1935) or Racah (1949) phases.

There are several areas of recent interest that have not been mentioned in this article. First, it
is clear from (13.12) that the 3-jm factors will be zero if the labels A, a, 4, and A, a, 1, are the same,
but the appropriate interchange matrices (for G and H) are different. Judd (1971) has studied
the zeros occurring in the various 3-jm factors of interest to atomic physicists. He is able to explain
most zeros by this means.

We have discussed the symmetries that are a consequence of complex conjugation, and of
permutations in the order of the product. The adjoint representations of the symmetric groups —
those pairs of representations obtained by interchanging the rows and columns of the Young
tableaux —are also simply related. Hamermesh (1962, p. 265) shows that the appropriate 3-jm
symbols are similar. Although adjoint representations of other groups are not so simply related,
it may be that there is a corresponding symmetry in the j symbols. Again, Robinson (1970, 1972)
suggests that the famous Regge symmetries for SU, (Regge 1958, 1959; Kramer & Sehgman
1969) have a counterpart for all groups.

In part G we have extended the ideas developed in the first two parts concerning the action
of a group on a Hilbert space, to the action of the group on the space of operators on the Hilbert

t Note added in proof, T October 1974: complex coefficients do occur, beginning with the tetrahedral group.

60-2
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space. In doing this it was especially important to use a complete basis for the operator space.
After writing down such a basis as |x;A;7;) (¥;3A5%,| and transforming to the irreducible basis
(rAz (%, A4, 25 45)), the Wigner—Eckart theorem and the other results followed rather easily.

The group operators, Og, being a subset of the set of all linear operators on our Hilbert space,
were easily written in terms of the irreducible tensor operators. This step was very important in
relating the various coefficients to the representation matrices in a way which leads to recursive
formulae for the coefficients for a chain of groups. This idea has been fruitfully pursued by Jucys,
Vanagas and others (see Vanagas 1971; Alisauskas, Jucys & Jucys 1972; for detailed references).

The author wishes to acknowledge the financial support of the New Zealand University Grants
Committee, and the hospitality of the Mathematics Departments of the Universities of
Southampton and of Toronto. The author has benefited from discussion with members of these
departments, especially with Dr G. de B. Robinson and Dr R. C. King. The author was fortunate
to have several discussions with Dr W. T. Sharp before his untimely death.

Some of the points in the appendix I owe to Dr L. C. Biedenharn, while he was a Visiting
Erskine Fellow at the University of Canterbury.

AprrENDIX: THE BIEDENHARN-LOUCK TENSORS FOR Uy

In alengthy series of articles Biedenharn and his co-workers have studied the properties of the
coupling and recoupling coefficients of the unitary groups (Biedenharn 1963; Baird & Biedenharn
1963—5). Recently several survey articles have also appeared (see, for example, Louck 1970;
Holman & Biedenharn 1971) and also substantial applications of theory to U, (Biedenharn,
Louck, Chacon & Ciftan 1972; Biedenharn & Louck 1972). The purpose of this appendix is to
use the present language to discuss this formulation and a few of the results they have obtained.

As these authors note, the group Uy has some rather special properties, and I believe it useful
to carefully distinguish the general from the specific.

First, Uy is a direct product group Uy = SUy x Uy, and thus it follows that the 3-jm symbols
(and coupling coefficients) of Uy may be written as a product of 3-jm symbols for the two groups
SUy and U,. The 3-ym symbol for U, is especially simple. Labelling representations of U (all
one-dimensional) in the usual fashion by a single integer # (= 2m of §0,) we have for all 3-ym
symbols

n [ 7. .
(11 ¢ 13) = Ontnyng, 0 (A1)

or this multiplied by a completely arbitrary phase. (A1) is much the simplest choice and the
present author would take the view that it should be chosen always. ‘Always’ is most important
since we have then related the phases of all 3-ym symbols of Uy, to those of SUy, where there is
much less choice (see also our comments after (14.3), and in Kramer 1968, section 7).

Secondly, Louck & Biedenharn use the canonical subgroup basis (U, > Uy_; 2 ... 2 U})
throughout. We have shown here that certain properties of the coefficients are a consequence of
the group, but other properties follow from the particular basis chosen. In particular the
recoupling coefficients are independent of the basis choice (see our remark after equation (11.5)).
Thus if a canonical labelling scheme for the multiplicity space exists for a particular group one
might hope to derive this fact without discussing the ket basis. We are suggesting that one should
aim to calculate the recoupling coefficients before the coupling coefficients.
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Thirdly, partly as a consequence of their basis choice, Louck and Biedenharn attach consider-
able significance to the following result. Writing the resolution of the Kronecker product of Uy as

{A} X {lu’} = ngl/w{v} (A 2)
we have ng/\/w < l{/\}UN' (A 3)

(the right-hand side being the dimension of the representation {A}). The equality holds for
some {u}. These results suggested to Biedenharn that one should label the terms in the product
by the labels used for the basis kets of the ket-space {A} (the Gel’fand pattern). However, we have
also that the Littlewood-Richardson rule gives

g)t/w < ‘[/\]SJ: (A 4)

where the equality holds for some z, v and N. (A 4) would suggest labelling the multiplicity
using a Yamanouchi label —that is, a basis label appropriate to the symmetric group §;. Other
considerations support this latter suggestion. First, the form of (A 3) suggests a similar result for
other groups, which is not the case, but (A 4) depends on the well known duality of the properties
of the unitary and symmetric groups. This duality is peculiar to these groups and would not be
expected to generalize.

Further support for such a multiplicity label comes from the work of Kramer (1968). Although
considering only the multiplicity free case, he proves that the 6-j symbol for Uy is equal (up to
phases and normalizations) to a 6-fsymbol for §;. The 6-fsymbol is defined by recoupling between
subgroup chains. A Yamanouchi type symbol may thus arise in a very natural fashion in the
general case.

None of these remarks should be taken as evidence that the two labelling schemes do not in fact
coincide. We repeat our remark that the unitary and symmetric groups have all sorts of combina-
toric structure in addition to what may be regarded as group theoretic in origin. (One of
Biedenharn and Louck’s earlier problems was to assign the operator patterns to their null spaces.
The null space concept separates the multiplicity space in a clear-cut manner, but only fixes the
operator pattern up to its ‘shift’ value. Note that the number of non-null patterns I" of A with
given shift, u-v, is precisely g, ,. In the U, case and certain other cases they prove that the limit
properties of the coefficients do provide a unique assignment of the operator pattern.)

In future papers we hope to explore the duality of the symmetric and the unitary groups. The
interwovenness of the theories of these groups can perhaps be understood as resulting from the
unitary group essentially describing the most general linear transformation, and the symmetric
group describing the most general permutation. In this connexion it is apparent also that further
combinatorial results can be deduced from the character theory of these groups (see Butler &
King 19734, b).

Let us now go on to discuss the vector space concepts used by the Biedenharn-Louck school,
for they manipulate the spaces in a more powerful manner than is usual, and do not always state
this. In particular they usually identify (in the manner of a pure mathematician) all spaces which
have the property under review. For example, in Louck (1970, p. 20) Louck chooses the linear
space the tensors operate on to contain each and every type of irreducible representation space
(an infinite number) once and only once. In a physical situation this would be realized but rarely
and we usually need to retain, for use elsewhere, any non-group-theoretic properties of the spaces.
In this article, we have explicitly included the label x to distinguish similar representation spaces.

When restriction is made to a subgroup (in order to obtain recursion formulae) a corresponding
60-3
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restriction is made by these other authors, from the Hilbert space to a subspace. The subspace is
again required to contain each dissimilar ket representation space exactly once. The manner of
choosing (by projection or factorization) such a subspace from the infinitely many which are
available, is most instructive, so let us discuss this now.

In order to see the generality of their construction and to ignore properties consequent upon
their canonical basis, let us return to the general situations of §§2 and 12. We take a Hilbert
space # with a group G acting upon it. From basic group representation theory (applicable to
any finite or compact group) we may write S as a direct sum of (finite dimensional) irreducible
representation spaces.

H =@ Ay, (A5)
ZA

where x is a discrete label and is independent of the group properties, but ‘counts’ the irrep spaces
labelled A. Let there be £, of them. Thus the space

Fp
& o, (A6)
with basis
{Jxdiy: x =1, ... ky, i = 1,...|A|}, (A7)
is factorizable, into a tensor product space
k,
él Hop = U@ 6, (A8)
&r=
with bases
{JgAd:x = 1,..,k} for U, (A9)
and {JAdy:i=1,...]A]} for B, (A 10)
where |2y = [xA) |AL), (A11)

and the %, contains all the group theoretic information (of G).
For a subgroup H of G, the space #, reduces to a direct sum of irreps of A

‘%\ =@ ‘%\a/u (A 12)
ag

where the range of the sum over ais from 1 to &}, the multiplicity of z in A. By the above argument
(H taking the place of G, and a of x) we have

= V® o, (A13)

the bases being
{|Aauy: a = 1,...,a}} for V3, (A 14)
and Uiy =1 luly for 22, (A15)

A typical basis ket of the original Hilbert space # may then be written

|¥Aazy = |3 o) |5, (A 16)

where we are to remember that the kets belong to four different spaces. From our work in part B
of this paper, it is clear that the spaces ¥}, with typical basis kets |Aau) are the most interesting,
even though in the multiplicity one case they are one-dimensional.

One of the important aspects of the Biedenharn-Louck approach is to factor the tensor
operators of the basis (15.5) into novel pieces. The essential point is to take an incomplete
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operator basis for a Hilbert space constructed in such a way from the factored pieces above (A 16),
that the operators are a basis for our original space.
As before, we first ignore the subgroup structure. (A 5) and (A 8) give us

H =0 (Lh® H#); (A 17)
and this is a subspace of
e%, = UG® %Gr, (AlS)
where Us=a U, (A 19)
x
and Hy= @ A (A 20)
A

Now a basis for the operator space on Uy is the set of
EXEECVNE (A21)
From the set of all basis operators of %,
(rAi(Ay, ) (A 22)

we select a subset by taking certain linear combinations. Either the S-functional or weight
diagram approaches to the character theory of the classical groups leads to natural significance

of the difference
A=2A—-A,

of the representation labels (but here we only require countability). Biedenharn and Louck
combine this ‘shift’ 4 with the index 7, to produce an ‘operator pattern’ I" = r4 which for the
unitary groups may be usefully put into correspondence with the canonical basis label (but again
this correspondence is not relevant to this present discussion on factorization).

The canonical unit (Wigner) tensor operators of Biedenharn and Louck are obtained from
(A 22) by summing over A, for fixed I’

I
</\> = %} (rAi (g, Ay))

=2 X% (rayty| Ad5 Agig) |Aq81) {Agty|. (A23)

Az 1,12

The tensor products of the operators (A 21) and ( A 22) are clearly a basis for the operator space
on (A 18). The tensor products of the operators (A 21) and (A 23) generate a subspace of this, but
are a basis of the operator spaces of (A 17), the original Hilbert space. We have

I
(PAL (%3 Ay, %5 Ag)) = |3 A1) (g Ay </\> . (A 24)

(We use (A 11) to prove the matrix elements are identical.)
We now return to the subgroup structure, G > H. A repeat of the argument gives
r r

' Y

A A :
= A25

af % ap <’l;>’ ( )

J Y
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where for the subgroup we have
=80, &= py— iy

and = 3 (0 1) (A 26)
The tensor operator factor

)\

a

Y

is defined by using a coupling (or 3-jm) factor

I
A
ap = AE Zﬂ <T/\1“1;“15l/\aﬂ5 Agag gy IAlal/’l’1> </\2“2:“2l- (A27)
Y

Biedenharn & Louck term the operator factor a ‘projective unit Wigner tensor operator’. For
any canonical basis the labels ¢ are not needed, and Biedenharn & Louck suppress the # (by
including it in ) for the operator factor. We prefer not to do this.

The Biedenharn-Louck operator factor has an important uniqueness property for a canonical
(multiplicity zero or one) basis. Namely the action of an operator on a ket is to produce a single
basis ket, with a numerical factor, which is the coupling factor. An otherwise more natural
operator factor might seem to be obtained by inserting an independent sum over p, in (A 27) -
that is, by fixing s and not v = sd. Such an operator factor would be more simply related to the
basis tensors of the space® V4. We would have

I'=rA7
A
a = X (rAaps(A,A5)), (A28)
74 2
Ry

and the sum over y = s¢ in (A 25) would become one over s only. Symmetry can be preserved
by similarly inserting sums over A; in (A 23) and (A 28), and g, in (A 26).
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